30 research outputs found

    Looking for defects in the 2PI correlator

    Get PDF
    Truncations of the 2PI effective action are seen as a promising way of studying non-equilibrium dynamics in quantum field theories. We probe their applicability in the non-perturbative setting of topological defect formation in a symmetry-breaking phase transition, by comparing full classical lattice field simulations and the 2PI formulation for classical fields in an O(NN) symmetric scalar field theory. At next-to-leading order in 1/N, the 2PI formalism fails to reproduce any signals of defects in the two-point function. This suggests that one should be careful when applying the 2PI formalism for symmetry breaking phase transitions.Comment: 22 pages, 6 figure

    From spinons to magnons in explicit and spontaneously dimerized antiferromagnetic chains

    Full text link
    We reconsider the excitation spectra of a dimerized and frustrated antiferromagnetic Heisenberg chain. This model is taken as the simpler example of compiting spontaneous and explicit dimerization relevant for Spin-Peierls compounds. The bosonized theory is a two frequency Sine-Gordon field theory. We analize the excitation spectrum by semiclassical methods. The elementary triplet excitation corresponds to an extended magnon whose radius diverge for vanishing dimerization. The internal oscilations of the magnon give rise to a series of excited state until another magnon is emited and a two magnon continuum is reached. We discuss, for weak dimerization, in which way the magnon forms as a result of a spinon-spinon interaction potential.Comment: 5 pages, latex, 3 figures embedded in the tex

    Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory

    Get PDF
    As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function expansion. The effective equations of motion imply e.g. Coulomb scattering, due to the inhomogeneous gauge field. The equations are solved numerically. We define time dependent fermion particle numbers with the help of the single-time Wigner function and study particle production starting from inhomogeneous initial conditions. The particle numbers are compared with the Fermi-Dirac distribution parametrized by a time dependent temperature and chemical potential. We find that the fermions approximately thermalize locally in time.Comment: 16 pages + 6 eps figures, some clarifications and two references added, typos corrected; to appear in Phys.Rev.

    Domain excitations in spin-Peierls systems

    Full text link
    We study a model of a Spin-Peierls material consisting of a set of antiferromagnetic Heisenberg chains coupled with phonons and interacting among them via an inter-chain elastic coupling. The excitation spectrum is analyzed by bosonization techniques and the self-harmonic approximation. The elementary excitation is the creation of a localized domain structure where the dimerized order is the opposite to the one of the surroundings. It is a triplet excitation whose formation energy is smaller than the magnon gap. Magnetic internal excitations of the domain are possible and give the further excitations of the system. We discuss these results in the context of recent experimental measurements on the inorganic Spin-Peierls compound CuGeO3_3Comment: 5 pages, 2 figures, corrected version to appear in Phys. Rev.

    The formation of vortex loops (strings) in continuous phase transitions

    Get PDF
    The formation of vortex loops (global cosmic strings) in an O(2) linear sigma model in three spatial dimensions is analyzed numerically. For over-damped Langevin dynamics we find that defect production is suppressed by an interaction between correlated domains that reduces the effective spatial variation of the phase of the order field. The degree of suppression is sensitive to the quench rate. A detailed description of the numerical methods used to analyze the model is also reported.Comment: LaTeX, 17 pages, 6 eps figures 2 references and a footnote adde

    Counting defects with the two-point correlator

    Full text link
    We study how topological defects manifest themselves in the equal-time two-point field correlator. We consider a scalar field with Z_2 symmetry in 1, 2 and 3 spatial dimensions, allowing for kinks, domain lines and domain walls, respectively. Using numerical lattice simulations, we find that in any number of dimensions, the correlator in momentum space is to a very good approximation the product of two factors, one describing the spatial distribution of the defects and the other describing the defect shape. When the defects are produced by the Kibble mechanism, the former has a universal form as a function of k/n, which we determine numerically. This signature makes it possible to determine the kink density from the field correlator without having to resort to the Gaussian approximation. This is essential when studying field dynamics with methods relying only on correlators (Schwinger-Dyson, 2PI).Comment: 11 pages, 7 figures

    Mixing of magnetic and phononic excitations in incommensurate Spin-Peierls systems

    Full text link
    We analyze the excitation spectra of a spin-phonon coupled chain in the presence of a soliton. This is taken as a microscopic model of a Spin-Peierls material placed in a high magnetic field. We show, by using a semiclassical approximation in the bosonized representation of the spins that a trapped magnetic state obtained in the adiabatic approximation is destroyed by dynamical phonons. Low energy states are phonons trapped by the soliton. When the magnetic gap is smaller than the phonon frequencies the only low energy state is a mixed magneto-phonon state with the energy of the gap. We emphasize that our results are relevant for the Raman spectra of the inorganic Spin-Peierls material CuGeO3_3.Comment: 5 pages, latex, 2 figures embedded in the tex

    A Grand Canonical Ensemble Approach to the Thermodynamic Properties of the Nucleon in the Quark-Gluon Coupling Model

    Get PDF
    In this paper, we put forward a way to study the nucleon's thermodynamic properties such as its temperature, entropy and so on, without inputting any free parameters by human hand, even the nucleon's mass and radius. First we use the Lagrangian density of the quark gluon coupling fields to deduce the Dirac Equation of the quarks confined in the gluon fields. By boundary conditions we solve the wave functions and energy eigenvalues of the quarks, and thus get energy-momentum tensor, nucleon mass, and density of states. Then we utilize a hybrid grand canonical ensemble, to generate the temperature and chemical potentials of quarks, antiquarks of three flovars by the four conservation laws of the energy and the valence quark numbers, after which, all other thermodynamic properties are known. The only seemed free paremeter, the nucleon radius is finally determined by the grand potential minimal principle.Comment: 5 pages, LaTe

    Formation of topological defects in gauge field theories

    Get PDF
    When a symmetry gets spontaneously broken in a phase transition, topological defects are typically formed. The theoretical picture of how this happens in a breakdown of a global symmetry, the Kibble-Zurek mechanism, is well established and has been tested in various condensed matter experiments. However, from the viewpoint of particle physics and cosmology, gauge field theories are more relevant than global theories. In recent years, there have been significant advances in the theory of defect formation in gauge field theories, which make precise predictions possible, and in experimental techniques that can be used to test these predictions in superconductor experiments. This opens up the possibility of carrying out relatively simple and controlled experiments, in which the non-equilibrium phase transition dynamics of gauge field theories can be studied. This will have a significant impact on our understanding of phase transitions in the early universe and in heavy ion collider experiments. In this paper, I review the current status of the theory and the experiments in which it can be tested.Comment: Review article, 43 pages, 7 figures. Minor changes, some references added. Final version to appear in IJMP
    corecore