71 research outputs found
Myosin heavy chain and physiological adaptation of the rat diaphragm in elastase-induced emphysema
BACKGROUND: Several physiological adaptations occur in the respiratory muscles in rodent models of elastase-induced emphysema. Although the contractile properties of the diaphragm are altered in a way that suggests expression of slower isoforms of myosin heavy chain (MHC), it has been difficult to demonstrate a shift in MHCs in an animal model that corresponds to the shift toward slower MHCs seen in human emphysema. METHODS: We sought to identify MHC and corresponding physiological changes in the diaphragms of rats with elastase-induced emphysema. Nine rats with emphysema and 11 control rats were studied 10 months after instillation with elastase. MHC isoform composition was determined by both reverse transcriptase polymerase chain reaction (RT-PCR) and immunocytochemistry by using specific probes able to identify all known adult isoforms. Physiological adaptation was studied on diaphragm strips stimulated in vitro. RESULTS: In addition to confirming that emphysematous diaphragm has a decreased fatigability, we identified a significantly longer time-to-peak-tension (63.9 ± 2.7 ms versus 53.9 ± 2.4 ms). At both the RNA (RT-PCR) and protein (immunocytochemistry) levels, we found a significant decrease in the fastest, MHC isoform (IIb) in emphysema. CONCLUSION: This is the first demonstration of MHC shifts and corresponding physiological changes in the diaphragm in an animal model of emphysema. It is established that rodent emphysema, like human emphysema, does result in a physiologically significant shift toward slower diaphragmatic MHC isoforms. In the rat, this occurs at the faster end of the MHC spectrum than in humans
Enhancement of calcium cycling by atrial sarcoplasmic reticulum after cardiopulmonary bypass and cardioplegia during open heart surgery
Activation of heat-shock transcription factor in rat heart after heat shock and exercise
Stress-induced transcriptional regulation of the heat-shock proteins (HSP) is mediated by activation and binding of the heat-shock transcription factors (HSF) to the heat-shock element (HSE). Given the similarities between the stressors known to activate the HSF in cultured cells and the physiological stresses known to occur during exercise, HSF activation was examined in the hearts from exercising animals. Sprague-Dawley rats (5 rats/group) were run on a treadmill (24 m/min) for either 0, 20, 40, or 60 min or to exhaustion (102 +/- 7 min). Protein extracts were assessed for HSF activation by mobility-shift gels. Extracts from the hearts of nonrunning rats demonstrated no HSF activation, whereas HSF activation was detected in 80% of the hearts from animals that run for at least 40 min. These results demonstrate that treadmill running is capable of activating the HSF and increasing 70-kDa HSP mRNA in the rat myocardium.</jats:p
- …
