3,526 research outputs found

    Renormalization of hole-hole interaction at decreasing Drude conductivity

    Full text link
    The diffusion contribution of the hole-hole interaction to the conductivity is analyzed in gated GaAs/Inx_xGa1x_{1-x}As/GaAs heterostructures. We show that the change of the interaction correction to the conductivity with the decreasing Drude conductivity results both from the compensation of the singlet and triplet channels and from the arising prefactor αi<1\alpha_i<1 in the conventional expression for the interaction correction.Comment: 6 pages, 5 figure

    Lifshitz transition from valence fluctuations in YbAl3

    Full text link
    In Kondo lattice systems with mixed valence, such as YbAl3, interactions between localized electrons in a partially filled f shell and delocalized conduction electrons can lead to fluctuations between two different valence configurations with changing temperature or pressure. The impact of this change on the momentum-space electronic structure and Fermi surface topology is essential for understanding their emergent properties, but has remained enigmatic due to a lack of appropriate experimental probes. Here by employing a combination of molecular beam epitaxy (MBE) and in situ angle-resolved photoemission spectroscopy (ARPES) we show that valence fluctuations can lead to dramatic changes in the Fermi surface topology, even resulting in a Lifshitz transition. As the temperature is lowered, a small electron pocket in YbAl3 becomes completely unoccupied while the low-energy ytterbium (Yb) 4f states become increasingly itinerant, acquiring additional spectral weight, longer lifetimes, and well-defined dispersions. Our work presents the first unified picture of how local valence fluctuations connect to momentum space concepts including band filling and Fermi surface topology in the longstanding problem of mixed-valence systems.Comment: 18 pages, 11 figure

    Resonant Tunneling in a Dissipative Environment

    Full text link
    We measure tunneling through a single quantum level in a carbon nanotube quantum dot connected to resistive metal leads. For the electrons tunneling to/from the nanotube, the leads serve as a dissipative environment, which suppresses the tunneling rate. In the regime of sequential tunneling, the height of the single-electron conductance peaks increases as the temperature is lowered, although it scales more weekly than the conventional 1/T. In the resonant tunneling regime (temperature smaller than the level width), the peak width approaches saturation, while the peak height starts to decrease. Overall, the peak height shows a non-monotonic temperature dependence. We associate this unusual behavior with the transition from the sequential to the resonant tunneling through a single quantum level in a dissipative environment.Comment: 5 pages, 5 figure

    Simplicial quantum dynamics

    Full text link
    Present-day quantum field theory can be regularized by a decomposition into quantum simplices. This replaces the infinite-dimensional Hilbert space by a high-dimensional spinor space and singular canonical Lie groups by regular spin groups. It radically changes the uncertainty principle for small distances. Gaugeons, including the gravitational, are represented as bound fermion-pairs, and space-time curvature as a singular organized limit of quantum non-commutativity. Keywords: Quantum logic, quantum set theory, quantum gravity, quantum topology, simplicial quantization.Comment: 25 pages. 1 table. Conference of the International Association for Relativistic Dynamics, Taiwan, 201

    Theory of quantum metal to superconductor transitions in highly conducting systems

    Full text link
    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which ``Anderson's theorem'' does not apply. We explicitly study the transition in superconductor-metal composites, in an s-wave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition

    Anderson Transitions: Criticality, Symmetries, and Topologies

    Full text link
    The physics of Anderson transitions between localized and metallic phases in disordered systems is reviewed. We focus on the character of criticality as well as on underlying symmetries and topologies that are crucial for understanding phase diagrams and the critical behavior.Comment: 36 pages. Published in "50 Years of Anderson Localization", ed. by E. Abrahams (World Scientific, 2010); reprinted in IJMP

    Quantum Numbers of Textured Hall Effect Quasiparticles

    Full text link
    We propose a class of variational wave functions with slow variation in spin and charge density and simple vortex structure at infinity, which properly generalize both the Laughlin quasiparticles and baby Skyrmions. We argue that the spin of the corresponding quasiparticle has a fractional part related in a universal fashion to the properties of the bulk state, and propose a direct experimental test of this claim. We show that certain spin-singlet quantum Hall states can be understood as arising from primary polarized states by Skyrmion condensation.Comment: 13 pages, no figures, Phyzz

    Interaction effects on magnetooscillations in a two-dimensional electron gas

    Full text link
    Motivated by recent experiments, we study the interaction corrections to the damping of magnetooscillations in a two-dimensional electron gas (2DEG). We identify leading contributions to the interaction-induced damping which are induced by corrections to the effective mass and quantum scattering time. The damping factor is calculated for Coulomb and short-range interaction in the whole range of temperatures, from the ballistic to the diffusive regime. It is shown that the dominant effect is that of the renormalization of the effective electron mass due to the interplay of the interaction and impurity scattering. The results are relevant to the analysis of experiments on magnetooscillations (in particular, for extracting the value of the effective mass) and are expected to be useful for understanding the physics of a high-mobility 2DEG near the apparent metal-insulator transition.Comment: 24 pages; subsection adde

    Random walks in the space of conformations of toy proteins

    Full text link
    Monte Carlo dynamics of the lattice 48 monomers toy protein is interpreted as a random walk in an abstract (discrete) space of conformations. To test the geometry of this space, we examine the return probability P(T)P(T), which is the probability to find the polymer in the native state after TT Monte Carlo steps, provided that it starts from the native state at the initial moment. Comparing computational data with the theoretical expressions for P(T)P(T) for random walks in a variety of different spaces, we show that conformational spaces of polymer loops may have non-trivial dimensions and exhibit negative curvature characteristic of Lobachevskii (hyperbolic) geometry.Comment: 4 pages, 3 figure
    corecore