18,236,243 research outputs found
Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)
Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with appropriate antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial therapy is associated with poor patient outcomes and the development of bacterial resistance. The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited development of new agents available to counteract them have caused an impending crisis with alarming implications, especially with regards to Gram-negative bacteria. An international task force from 79 different countries has joined this project by sharing a document on the rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA, involving many of the world's leading experts, can actively raise awareness in health workers and can improve prescribing behavior in treating IAIs
Study of B Meson Production in p plus Pb Collisions at root s(NN)=5.02 TeV Using Exclusive Hadronic Decays
Peer reviewe
Direct photon elliptic flow in Pb-Pb collisions at root s(NN)=2.76 TeV
The elliptic flow of inclusive and direct photons was measured at mid-rapidity in two centrality classes 0-20% and 20-40% in Pb-Pb collisions at root s(NN) = 2.76 TeV by ALICE. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the detector material with the e(broken vertical bar)e pairs reconstructed in the central tracking system. The results of the two methods were combined and the direct-photon elliptic flow was extracted in the transverse momentum range 0.9 < p(T) < 6.2 GeV/c. A comparison to RHIC data shows a similar magnitude of the measured direct-photon elliptic flow. Hydrodynamic and transport model calculations are systematically lower than the data, but are found to be compatible. (C) 2018 The Author. Published by Elsevier B.V.Peer reviewe
Search for eccentric binary black hole mergers with Advanced LIGO and Advanced Virgo during their first and second observing runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates greater than about 100 Gpcâ3 yrâ1 for e > 0.1, assuming a black hole mass spectrum with a power-law index less than about 2
Properties of the Binary Neutron Star Merger GW170817
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16ââdeg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89ââMâ when allowing for large component spins, and to lie between 1.16 and 1.60ââMâ (with a total mass 2.73â0.01+0.04ââMâ) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Î are (0,630) when we allow for large component spins, and 300â230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal
Measuring (KSK +/-)-K-0 interactions using pp collisions at root s=7 TeV
We present the first measurements of femtoscopic correlations between the K-S(0) and K-+/- particles in pp collisions at root s = 7 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding solely via the a(0)(980) resonance. The extracted kaon source radius and correlation strength parameters for (KSK-)-K-0 are found to be equal within the experimental uncertainties to those for (KSK+)-K-0. Results of the present study are compared with those from identical-kaon femtoscopic studies also performed with pp collisions at root s = 7 TeV by ALICE and with a (KSK +/-)-K-0 measurement in Pb-Pb collisions at root s(NN) = 2.76 TeV. Combined with the Pb-Pb results, our pp analysis is found to be compatible with the interpretation of the a (980) having a tetraquark structure instead of that of a diquark. (C) 2018 Published by Elsevier B.V.Peer reviewe
Critical points and resonance of hyperplane arrangements
If F is a master function corresponding to a hyperplane arrangement A and a
collection of weights y, we investigate the relationship between the critical
set of F, the variety defined by the vanishing of the one-form w = d log F, and
the resonance of y. For arrangements satisfying certain conditions, we show
that if y is resonant in dimension p, then the critical set of F has
codimension at most p. These include all free arrangements and all rank 3
arrangements.Comment: revised version, Canadian Journal of Mathematics, to appea
Impact of a Shorter Brine Soaking Time on Nutrient Bioaccessibility and Peptide Formation in 30-Months-Ripened Parmigiano Reggiano Cheese
Reducing the salt content in food is an important nutritional strategy for decreasing the risk of diet-related diseases. This strategy is particularly effective when applied to highly appreciated food having good nutritional characteristics, if it does not impact either upon sensory or nutritional properties of the final product. This work aimed at evaluating if the reduction of salt content by decreasing the brine soaking time modifies fatty acid and protein bioaccessibility and bioactive peptide formation in a 30-month-ripened Parmigiano Reggiano cheese (PRC). Hence, conventional and hyposodic PRC underwent in vitro static gastrointestinal digestion, and fatty acid and protein bioaccessibility were assessed. The release of peptide sequences during digestion was followed by LCâHRMS, and bioactive peptides were identified using a bioinformatic approach. At the end of digestion, fatty acid and protein bioaccessibility were similar in conventional and hyposodic PRC, but most of the bioactive peptides, mainly the ACE-inhibitors, were present in higher concentrations in the low-salt cheese. Considering that the sensory profiles were already evaluated as remarkably similar in conventional and hyposodic PRC, our results confirmed that shortening brine soaking time represents a promising strategy to reduce salt content in PRC
Assessment of the control measures of the category A diseases of Animal Health Law: peste des petits ruminants
EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases (âAnimal Health Lawâ). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for peste des petits ruminants (PPR). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radii of the protection and surveillance zones, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, the transmission kernels used for the assessment of the minimum radii of the protection and surveillance zones are shown. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. The monitoring period of 21 days was assessed as effective, except for the first affected establishments detected, where 33 days is recommended. It was concluded that beyond the protection (3 km) and the surveillance zones (10 km) only 9.6% (95% CI: 3.1â25.8%) and 2.3% (95% CI: 1â5.5%) of the infections from an affected establishment may occur, respectively. This may be considered sufficient to contain the disease spread (95% probability of containing transmission corresponds to 5.3 km). Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad-hoc requests in relation to PPR
A Laser Frequency Transverse Modulation Might Compensate for the Spectral Broadening Due to Large Electron Energy Spread in Thomson Sources
Compact laser plasma accelerators generate high-energy electron beams with increasing quality. When used in inverse Compton backscattering, however, the relatively large electron energy spread jeopardizes potential applications requiring small bandwidths. We present here a novel interaction scheme that allows us to compensate for the negative effects of the electron energy spread on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and numerical simulations for hard X-ray Thomson sources based on laser plasma accelerators
- âŠ