222 research outputs found

    Cornering the axion-like particle explanation of quasar polarisations

    Full text link
    In a series of paper, it has been shown that the distribution of polarisation position angles for visible light from quasars is not random in extremely large regions of the sky. As explained in a recent article, the measurement of vanishing circular polarisation for such quasars is an important problem for a mechanism involving the mixing with axion-like particles in external magnetic fields. In this note, we stress that a recent report of similar coherent orientations of polarisation in radiowaves further disfavours the need for such particles, as an effect at these wavelengths would be extremely suppressed or would directly contradict data.Comment: 5 pages; no figures; accepted for publication as a Brief Report in Physical Review

    On the circular polarisation of light from axion-photon mixing

    Full text link
    From the analysis of measurements of the linear polarisation of visible light coming from quasars, the existence of large-scale coherent orientations of quasar polarisation vectors in some regions of the sky has been reported. Here, we show that this can be explained by the mixing of the incoming photons with nearly massless pseudoscalar (axion-like) particles in extragalactic magnetic fields. We present a new treatment in terms of wave packets and discuss its implications for the circular polarisation.Comment: Contributed to "Invisible Universe International Conference", Paris, June 29 - July 3 2009. To be published in AIP proceeding

    New constraints on very light pseudoscalars

    Full text link
    Nearly massless axion-like particles are of interest for astrophysical observations, and some constraints on their parameter space do exist in the literature. Here, we propose to put new constraints on these particles using polarisation and, in particular, the polarisation differences observed between different quasar classes.Comment: Contributed to the "7th Patras Workshop on Axions, WIMPs and WISPs", Mykonos June 26 - July 1 201

    Probing the inner structure of distant AGNs with gravitational lensing

    Full text link
    Microlensing is a powerful technique which can be used to study the continuum and the broad line emitting regions in distant AGNs. After a brief description of the methods and required data, we present recent applications of this technique. We show that microlensing allows one to measure the temperature profile of the accretion disc, estimate the size and study the geometry of the region emitting the broad emission lines.Comment: 6 pages, Proceedings of the Seyfert 2012 conferenc

    Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar

    Full text link
    Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques that can test this model, yielding to the measurement of the size and of temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions: a microlensed region, corresponding to the compact accretion disc; and a non-microlensed region, more extended and contributing to at least 30\% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated with the host galaxy, but rather with light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 \AA. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as TR1/νT \propto R^{-1/\nu}. We find a most likely source half-light radius of R1/2=0.61×1016R_{1/2} = 0.61 \times 10^{16}\,cm (i.e., 0.002\,pc) at 0.18\,μ\mum, and a most-likely index of ν=0.4\nu=0.4. The standard disc (ν=4/3\nu=4/3) model is not ruled out by our data, and is found within the 95\% confidence interval associated with our measurements. We demonstrate that, for H1413+117, the existence of an extended continuum in addition to the disc emission only has a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes, as previously reported in the literature.Comment: Accepted for publication in Astronomy and Astrophysics. 12 pages. Minor changes w.r.t. v1 (language editing, Fig. 5-6

    Microlensing of the broad line region in 17 lensed quasars

    Full text link
    When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be observed in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% show microlensing of the broad emission lines. Focusing on the most common lines in our spectra (CIII] and MgII) we detect microlensing of either the blue or the red wing, or of both wings with the same amplitude. This observation implies that the broad line region is not in general spherically symmetric. In addition, the frequent detection of microlensing of the blue and red wings independently but not simultaneously with a different amplitude, does not support existing microlensing simulations of a biconical outflow. Our analysis also provides the intrinsic flux ratio between the lensed images and the magnitude of the microlensing affecting the continuum. These two quantities are particularly relevant for the determination of the fraction of matter in clumpy form in galaxies and for the detection of dark matter substructures via the identification of flux ratio anomalies.Comment: Accepted for publication in Astronomy and Astrophysics. Main data set available via the German virtual observatory http://dc.g-vo.org/mlqso/q/web/form and soon via CDS. Additional material available on reques

    Optical linear polarization measurements of quasars obtained with the 3.6m telescope at the La Silla Observatory

    Full text link
    We report 192 previously unpublished optical linear polarization measurements of quasars obtained in April 2003, April 2007, and October 2007 with the European Southern Observatory Faint Object Spectrograph and Camera (EFOSC2) instrument attached to the 3.6m telescope at the La Silla Observatory. Each quasar was observed once. Among the 192 quasars, 89 have a polarization degree p0.6%p \geq 0.6\%, 18 have p2%p \geq 2\%, and two have p10%p \geq 10\%.Comment: Accepted for publication in A&

    Microlensing of the broad-line region in the quadruply imaged quasar HE0435-1223

    Full text link
    Using infrared spectra of the z = 1.693 quadruply lensed quasar HE0435-1223 acquired in 2009 with the spectrograph SINFONI at the ESO Very Large Telescope, we have detected a clear microlensing effect in images A and D. While microlensing affects the blue and red wings of the H{\alpha} line profile in image D very differently, it de-magnifies the line core in image A. The combination of these different effects sets constraints on the line-emitting region; these constraints suggest that a rotating ring is at the origin of the H{\alpha} line. Visible spectra obtained in 2004 and 2012 indicate that the MgII line profile is microlensed in the same way as the H{\alpha} line. Our results therefore favour flattened geometries for the low-ionization line-emitting region, for example, a Keplerian disk. Biconical models cannot be ruled out but require more fine-tuning. Flux ratios between the different images are also derived and confirm flux anomalies with respect to estimates from lens models with smooth mass distributions.Comment: 6 pages, 4 figures, 3 tables, accepted by A&A on 10 April 201

    Understanding the relations between QSOs and their host galaxies from combined HST imaging and VLT spectroscopy

    Full text link
    The host galaxies of six nearby QSOs are studied on the basis of high resolution HST optical images and spatially resolved VLT slit spectra. The gas ionization and velocity are mapped as a function of the distance to the central QSO. In the majority of the cases, the QSO significantly contributes to the gas ionization in its whole host galaxy, and sometimes even outside. Reflection or scattering of the QSO \ha line from remote regions of the galaxy is detected in several instances. The line shifts show that, in all cases, the matter responsible for the light reflection moves away from the QSO, likely accelerated by its radiation pressure. The two faintest QSOs reside in spirals, with some signs of a past gravitational perturbation. One of the intermediate luminosity QSOs resides in a massive elliptical containing gas ionized (and probably pushed away) by the QSO radiation. The other medium-power object is found in a spiral galaxy displaying complex velocity structure, with the central QSO moving with respect to the bulge, probably as a result of a galactic collision. The two most powerful objects are involved in violent gravitational interactions and one of them has no detected host. These results suggest that (1) large-scale phenomena, such as galactic collisions, are closely related to the triggering and the feeding of the QSO and (2) once ignited, the QSO has significant influence on its large-scale neighborhood (often the whole host and sometimes further away).Comment: Accepted for publication in ApJ. 31 pages, 17 figures, 3 table
    corecore