841 research outputs found
New bounds on the Lieb-Thirring constants
Improved estimates on the constants , for ,
in the inequalities for the eigenvalue moments of Schr\"{o}dinger
operators are established
Eigenvalue Bounds for Perturbations of Schrodinger Operators and Jacobi Matrices With Regular Ground States
We prove general comparison theorems for eigenvalues of perturbed Schrodinger
operators that allow proof of Lieb--Thirring bounds for suitable non-free
Schrodinger operators and Jacobi matrices.Comment: 11 page
Weighted Supermembrane Toy Model
A weighted Hilbert space approach to the study of zero-energy states of
supersymmetric matrix models is introduced. Applied to a related but
technically simpler model, it is shown that the spectrum of the corresponding
weighted Hamiltonian simplifies to become purely discrete for sufficient
weights. This follows from a bound for the number of negative eigenvalues of an
associated matrix-valued Schr\"odinger operator.Comment: 18 pages, 2 figures; to appear in Lett. Math. Phys
Lieb-Thirring inequalities for geometrically induced bound states
We prove new inequalities of the Lieb-Thirring type on the eigenvalues of
Schr\"odinger operators in wave guides with local perturbations. The estimates
are optimal in the weak-coupling case. To illustrate their applications, we
consider, in particular, a straight strip and a straight circular tube with
either mixed boundary conditions or boundary deformations.Comment: LaTeX2e, 14 page
-approximation of the integrated density of states for Schr\"odinger operators with finite local complexity
We study spectral properties of Schr\"odinger operators on \RR^d. The
electromagnetic potential is assumed to be determined locally by a colouring of
the lattice points in \ZZ^d, with the property that frequencies of finite
patterns are well defined. We prove that the integrated density of states
(spectral distribution function) is approximated by its finite volume
analogues, i.e.the normalised eigenvalue counting functions. The convergence
holds in the space where is any finite energy interval and is arbitrary.Comment: 15 pages; v2 has minor fixe
Localization criteria for Anderson models on locally finite graphs
We prove spectral and dynamical localization for Anderson models on locally
finite graphs using the fractional moment method. Our theorems extend earlier
results on localization for the Anderson model on \ZZ^d. We establish
geometric assumptions for the underlying graph such that localization can be
proven in the case of sufficiently large disorder
Sufficient conditions for two-dimensional localization by arbitrarily weak defects in periodic potentials with band gaps
We prove, via an elementary variational method, 1d and 2d localization within
the band gaps of a periodic Schrodinger operator for any mostly negative or
mostly positive defect potential, V, whose depth is not too great compared to
the size of the gap. In a similar way, we also prove sufficient conditions for
1d and 2d localization below the ground state of such an operator. Furthermore,
we extend our results to 1d and 2d localization in d dimensions; for example, a
linear or planar defect in a 3d crystal. For the case of D-fold degenerate band
edges, we also give sufficient conditions for localization of up to D states.Comment: 9 pages, 3 figure
A new numerical approach to Anderson (de)localization
We develop a new approach for the Anderson localization problem. The
implementation of this method yields strong numerical evidence leading to a
(surprising to many) conjecture: The two dimensional discrete random
Schroedinger operator with small disorder allows states that are dynamically
delocalized with positive probability. This approach is based on a recent
result by Abakumov-Liaw-Poltoratski which is rooted in the study of spectral
behavior under rank-one perturbations, and states that every non-zero vector is
almost surely cyclic for the singular part of the operator.
The numerical work presented is rather simplistic compared to other numerical
approaches in the field. Further, this method eliminates effects due to
boundary conditions.
While we carried out the numerical experiment almost exclusively in the case
of the two dimensional discrete random Schroedinger operator, we include the
setup for the general class of Anderson models called Anderson-type
Hamiltonians.
We track the location of the energy when a wave packet initially located at
the origin is evolved according to the discrete random Schroedinger operator.
This method does not provide new insight on the energy regimes for which
diffusion occurs.Comment: 15 pages, 8 figure
On the negative spectrum of two-dimensional Schr\"odinger operators with radial potentials
For a two-dimensional Schr\"odinger operator
with the radial potential , we study the behavior of
the number of its negative eigenvalues, as the coupling
parameter tends to infinity. We obtain the necessary and sufficient
conditions for the semi-classical growth and for
the validity of the Weyl asymptotic law.Comment: 13 page
- …
