590 research outputs found

    The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells during the G(1) phase and is required maternally for early Arabidopsis development

    Get PDF
    PROLIFERA (PRL) encodes a homologue of the DNA replication licensing factor Mcm7, a highly conserved protein found in all eukaryotes. Insertions in the PROLIFERA gene are lethal, resulting in decreased transmission through the female gametophyte, and homozygous embryonic lethality. We show here that PROLIFERA is specifically expressed in populations of dividing cells in sporophytic tissues of the plant body, such as the palisade layer of the leaf and founder cells of initiating flower primordia, Gene fusions with the green fluorescent protein (GFP) reveal that the PROLIFERA protein accumulates during the G(1) phase of the cell cycle, and is transiently localized to the nucleus. During mitosis, the fusion protein rapidly disappears, returning to daughter nuclei during G(1), PROLIFERA::GUS fusions are strongly expressed in the central cell nucleus of mature megagametophytes, which have a variety of arrest points reflecting a leaky lethality. Expression is also observed in the endosperm of mutant prl embryo sacs that arrest following fertilization. Crosses with wild-type pollen result in occasional embryonic lethals that also stain for GUS activity, In contrast, embryos resulting from crosses of wild-type carpels with PRL::GUS pollen do not stain and are phenotypically normal. In situ hybridization of GUS fusion RNA indicates transcription is equivalent from maternally and paternally derived alleles, so that accumulation of maternally derived gametophytic protein is likely to be responsible for the 'maternal' effect

    A pattern-recognition theory of search in expert problem solving

    Get PDF
    Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data

    Expert chess memory: Revisiting the chunking hypothesis

    Get PDF
    After reviewing the relevant theory on chess expertise, this paper re-examines experimentally the finding of Chase and Simon (1973a) that the differences in ability of chess players at different skill levels to copy and to recall positions are attributable to the experts' storage of thousands of chunks (patterned clusters of pieces) in long-term memory. Despite important differences in the experimental apparatus, the data of the present experiments regarding latencies and chess relations between successively placed pieces are highly correlated with those of Chase and Simon. We conclude that the 2-second inter-chunk interval used to define chunk boundaries is robust, and that chunks have psychological reality. We discuss the possible reasons why Masters in our new study used substantially larger chunks than the Master of the 1973 study, and extend the chunking theory to take account of the evidence for large retrieval structures (templates) in long-term memory

    Efficacy of depth jumps to elicit a post-activation performance enhancement in junior endurance runners

    Get PDF
    Objectives: To determine the effect of performing depth jumps (DJ) pre-exercise on running economy (RE) and time to exhaustion (TTE) at the speed associated with maximal oxygen uptake (sV˙O2max) in a group of high-performing junior middle-distance runners. Design: Randomized crossover study. Methods: Seventeen national- and international-standard male distance runners (17.6 ± 1.2 years, 63.4 ± 6.3 kg, 1.76 ± 0.06 m, 70.7 ± 5.2 mL kg−1 min−1) completed two trials. Following a 5 min warm-up at 60% V˙O2max, participants performed a 5 min run at 20%Δ below oxygen uptake corresponding with lactate turn-point to determine pre-intervention RE. Participants then completed either six DJ from a box equivalent to their best counter-movement jump (CMJ) or a control condition (C) involving body weight quarter squats. After a 10 min passive recovery, another 5 min sub-maximal run was performed followed by a run to exhaustion at sV˙O2max. Results: Compared to the C trial, DJ produced moderate improvements (−3.7%, 95% confidence interval for effect size: 0.25–1.09) in RE, which within the context of minimal detectable change is considered possibly beneficial. Differences in TTE and other physiological variables were most likely trivial (ES: <0.2). Individual responses were small, however a partial correlation revealed a moderate relationship (r = −0.55, p = 0.028) between change in RE and CMJ height. Conclusions: The inclusion of a set of six DJ in the warm-up routine of a well-trained young male middle-distance runner is likely to provide a moderate improvement in RE

    Liquid-state NMR analysis of nanocelluloses

    Get PDF
    Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1H and 13C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, for example, surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P4444][OAc]):DMSO-d6 electrolyte in the 1D and 2D NMR characterization of poly(methyl methacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA-g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P4444][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1H and HSQC was shown to be effective in the discrimination between PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methyl methacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and, hence, molecular weight of the grafts compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool), were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.Peer reviewe

    Satellites will address critical science priorities for quantifying ocean carbon

    Get PDF
    The ability to routinely quantify global carbon dioxide (CO2) absorption by the oceans has become crucial: it provides a powerful constraint for establishing global and regional carbon (C) budgets, and enables identification of the ecological impacts and risks of this uptake on the marine environment. Advances in understanding, technology, and international coordination have made it possible to measure CO2 absorption by the oceans to a greater degree of accuracy than is possible in terrestrial landscapes. These advances, combined with new satellite‐based Earth observation capabilities, increasing public availability of data, and cloud computing, provide important opportunities for addressing critical knowledge gaps. Furthermore, Earth observation in synergy with in‐situ monitoring can provide the large‐scale ocean monitoring that is necessary to support policies to protect ocean ecosystems at risk, and motivate societal shifts toward meeting C emissions targets; however, sustained effort will be needed

    Elevated expression of caspase-3 inhibitors, survivin and xIAP correlates with low levels of apoptosis in active rheumatoid synovium

    Get PDF
    Introduction: Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a tumour necrosis factor (TNF) family member capable of inducing apoptosis in many cell types. Methods: Using immunohistochemistry, terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling (TUNEL) and real-time PCR we investigated the expression of TRAIL, TRAIL receptors and several key molecules of the intracellular apoptotic pathway in human synovial tissues from various types of arthritis and normal controls. Synovial tissues from patients with active rheumatoid arthritis (RA), inactive RA, osteoarthritis (OA) or spondyloarthritis (SpA) and normal individuals were studied. Results Significantly higher levels of TRAIL, TRAIL R1, TRAIL R2 and TRAIL R4 were observed in synovial tissues from patients with active RA compared with normal controls (p < 0.05). TRAIL, TRAIL R1 and TRAIL R4 were expressed by many of the cells expressing CD68 (macrophages). Lower levels of TUNEL but higher levels of cleaved caspase-3 staining were detected in tissue from active RA compared with inactive RA patients (p < 0.05). Higher levels of survivin and x-linked inhibitor of apoptosis protein (xIAP) were expressed in active RA synovial tissues compared with inactive RA observed at both the protein and mRNA levels. Conclusions: This study indicates that the induction of apoptosis in active RA synovial tissues is inhibited despite stimulation of the intracellular pathway(s) that lead to apoptosis. This inhibition of apoptosis was observed downstream of caspase-3 and may involve the caspase-3 inhibitors, survivin and xIAP.Anak ASSK Dharmapatni, Malcolm D Smith, David M Findlay, Christopher A Holding, Andreas Evdokiou, Michael J Ahern, Helen Weedon, Paul Chen, Gavin Screaton, Xiao N Xu and David R Hayne
    corecore