1,404 research outputs found

    Entanglement witnessing in superconducting beamsplitters

    Full text link
    We analyse a large class of superconducting beamsplitters for which the Bell parameter (CHSH violation) is a simple function of the spin detector efficiency. For these superconducting beamsplitters all necessary information to compute the Bell parameter can be obtained in Y-junction setups for the beamsplitter. Using the Bell parameter as an entanglement witness, we propose an experiment which allows to verify the presence of entanglement in Cooper pair splitters.Comment: 5 pages, 2 figures, accepted for publication in EP

    Anderson impurity in a correlated conduction band

    Full text link
    We investigate the physics of a magnetic impurity with spin 1/2 in a correlated metallic host. Describing the band by a Hubbard Hamiltonian, the problem is analyzed using dynamical mean-field-theory in combination with Wilson's nonperturbative numerical renormalization group. We present results for the single-particle density of states and the dynamical spin susceptibility at zero temperature. New spectral features (side peaks) are found which should be observable experimentally. In addition, we find a general enhancement of the Kondo scale due to correlations. Nevertheless, in the metallic phase, the Kondo scale always vanishes exponentially in the limit of small hybridization.Comment: Final version, 4 pages RevTeX, 8 eps figures include

    Long-Range Coulomb Effect on the Antiferromagnetism in Electron-doped Cuprates

    Full text link
    Using mean-field theory, we illustrate the long-range Coulomb effect on the antiferromagnetism in the electron-doped cuprates. Because of the Coulomb exchange effect, the magnitude of the effective next nearest neighbor hopping parameter increases appreciably with increasing the electron doping concentration, raising the frustration to the antiferromagnetic ordering. The Fermi surface evolution in the electron-doped cuprate Nd2−x_{2-x}Cex_xCuO4_4 and the doping dependence of the onset temperature of the antiferromagnetic pseudogap can be reasonably explained by the present consideration.Comment: 4 pages, 4 figure

    Canted Antiferromagnetic Order of Imbalanced Fermi-Fermi mixtures in Optical Lattices by Dynamical Mean-Field Theory

    Full text link
    We investigate antiferromagnetic order of repulsively interacting fermionic atoms in an optical lattice by means of Dynamical Mean-Field Theory (DMFT). Special attention is paid to the case of an imbalanced mixture. We take into account the presence of an underlying harmonic trap, both in a local density approximation and by performing full Real-Space DMFT calculations. We consider the case that the particle density in the trap center is at half filling, leading to an antiferromagnetic region in the center, surrounded by a Fermi liquid region at the edge. In the case of an imbalanced mixture, the antiferromagnetism is directed perpendicular to the ferromagnetic polarization and canted. We pay special attention to the boundary structure between the antiferromagnetic and the Fermi liquid phase. For the moderately strong interactions considered here, no Stoner instability toward a ferromagnetic phase is found. Phase separation is only observed for strong imbalance and sufficiently large repulsion.Comment: 7 pages, 5 figures, published versio

    Non-Hermitian Luttinger Liquids and Vortex Physics

    Full text link
    As a model of two thermally excited flux liquids connected by a weak link, we study the effect of a single line defect on vortex filaments oriented parallel to the surface of a thin planar superconductor. When the applied field is tilted relative to the line defect, the physics is described by a nonhermitian Luttinger liquid of interacting quantum bosons in one spatial dimension with a point defect. We analyze this problem using a combination of analytic and numerical density matrix renormalization group methods, uncovering a delicate interplay between enhancement of pinning due to Luttinger liquid effects and depinning due to the tilted magnetic field. Interactions dramatically improve the ability of a single columnar pin to suppress vortex tilt when the Luttinger liquid parameter g is less than or equal to one.Comment: 4 pages, 5 eps figures, minor changes made, one reference adde

    Operator-based derivation of phonon modes and characterization of correlations for trapped ions at zero and finite temperature

    Get PDF
    We present a self-contained operator-based approach to derive the spectrum of trapped ions. This approach provides the complete normal form of the low-energy quadratic Hamiltonian in terms of bosonic phonons, as well as an effective free-particle degree of freedom for each spontaneously broken spatial symmetry. We demonstrate how this formalism can directly be used to characterize an ion chain both in the linear and the zigzag regimes. In particular, we compute, both for the ground state and finite temperature states, spatial correlations, heat capacity, and dynamical susceptibility. Last, for the ground state, which has quantum correlations, we analyze the amount of energy reduction compared to an uncorrelated state with minimum energy, thus highlighting how the system can lower its energy by correlations.Singapore. Ministry of Education (MOE2014-T2-2-119)Singapore. Ministry of Education (R-144-000-350-112

    Anderson-Hubbard model with box disorder: Statistical dynamical mean-field theory investigation

    Full text link
    Strongly correlated electrons with box disorder in high-dimensional lattices are investigated. We apply the statistical dynamical mean-field theory, which treats local correlations non-perturbatively. The incorporation of a finite lattice connectivity allows for the detection of disorder-induced localization via the probability distribution function of the local density of states. We obtain a complete paramagnetic ground state phase diagram and find correlation-induced as well as disorder-induced metal-insulator transitions. Our results qualitatively confirm predictions obtained by typical medium theory. Moreover, we find that the probability distribution function of the local density of states in the metallic phase strongly deviates from a log-normal distribution as found for the non-interacting case.Comment: 13 pages, 15 figures, published versio

    Does a magnetic field modify the critical behaviour at the metal-insulator transition in 3-dimensional disordered systems?

    Full text link
    The critical behaviour of 3-dimensional disordered systems with magnetic field is investigated by analyzing the spectral fluctuations of the energy spectrum. We show that in the thermodynamic limit we have two different regimes, one for the metallic side and one for the insulating side with different level statistics. The third statistics which occurs only exactly at the critical point is {\it independent} of the magnetic field. The critical behaviour which is determined by the symmetry of the system {\it at} the critical point should therefore be independent of the magnetic field.Comment: 10 pages, Revtex, 4 PostScript figures in uuencoded compressed tar file are appende
    • …
    corecore