53 research outputs found

    Photocytotoxicity of mTHPC (Temoporfin) Loaded Polymeric Micelles Mediated by Lipase Catalyzed Degradation

    Get PDF
    Purpose. To study the in vitro photocytotoxicity and cellular uptake of biodegradable polymeric micelles loaded with the photosensitizer mTHPC, including the effect of lipase-catalyzed micelle degradation. Methods. Micelles of mPEG750-b-oligo(ɛ-caprolactone)5 (mPEG750-b-OCL5) with a hydroxyl (OH), benzoyl (Bz) or naphthoyl (Np) end group were formed and loaded with mTHPC by the film hydration method. The cellular uptake of the loaded micelles, and their photocytotoxicity on human neck squamous carcinoma cells in the absence and presence of lipase were compared with free and liposomal mTHPC (Fospeg ®). Results. Micelles composed of mPEG750-b-OCL5 with benzoyl and naphtoyl end groups had the highest loading capacity up to 30 % (w/w), likely due to π–π interactions between the aromatic end group and the photosensitizer. MTHPC-loaded benzoylated micelles (0.5 mg/mL polymer) did not display photocytotoxicity or any mTHPC-uptake by the cells, in contrast to free and liposomal mTHPC. After dilution of the micelles below the critical aggregation concentration (CAC), or after micelle degradation by lipase, photocytotoxicity and cellular uptake of mTHPC were restored. Conclusion. The high loading capacity of the micelles, the high stability of mTHPC-loaded micelles above the CAC, and the lipase-induced release of the photosensitizer makes these micelles very promising carriers for photodynamic therapy in vivo. KEY WORDS: drug release; enzymatic degradation; meta-tetra(hydroxyphenyl)chlorin (mTHPC); photodynamic therapy (PDT); polymeric micelles

    Hyperspectral Computed Tomographic Imaging Spectroscopy of Vascular Oxygen Gradients in the Rabbit Retina In Vivo

    Get PDF
    Diagnosis of retinal vascular diseases depends on ophthalmoscopic findings that most often occur after severe visual loss (as in vein occlusions) or chronic changes that are irreversible (as in diabetic retinopathy). Despite recent advances, diagnostic imaging currently reveals very little about the vascular function and local oxygen delivery. One potentially useful measure of vascular function is measurement of hemoglobin oxygen content. In this paper, we demonstrate a novel method of accurately, rapidly and easily measuring oxygen saturation within retinal vessels using in vivo imaging spectroscopy. This method uses a commercially available fundus camera coupled to two-dimensional diffracting optics that scatter the incident light onto a focal plane array in a calibrated pattern. Computed tomographic algorithms are used to reconstruct the diffracted spectral patterns into wavelength components of the original image. In this paper the spectral components of oxy- and deoxyhemoglobin are analyzed from the vessels within the image. Up to 76 spectral measurements can be made in only a few milliseconds and used to quantify the oxygen saturation within the retinal vessels over a 10–15 degree field. The method described here can acquire 10-fold more spectral data in much less time than conventional oximetry systems (while utilizing the commonly accepted fundus camera platform). Application of this method to animal models of retinal vascular disease and clinical subjects will provide useful and novel information about retinal vascular disease and physiology

    Amyloid and Tau Pathology Associations With Personality Traits, Neuropsychiatric Symptoms, and Cognitive Lifestyle in the Preclinical Phases of Sporadic and Autosomal Dominant Alzheimer's Disease

    Get PDF
    Background: Major prevention trials for Alzheimer’s disease (AD) are now focusing on multidomain lifestyle interventions. However, the exact combination of behavioral factors related to AD pathology remains unclear. In 2 cohorts of cognitively unimpaired individuals at risk of AD, we examined which combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle (years of education or lifetime cognitive activity) related to the pathological hallmarks of AD, amyloid-β, and tau deposits. Methods: A total of 115 older adults with a parental or multiple-sibling family history of sporadic AD (PREVENT-AD [PRe-symptomatic EValuation of Experimental or Novel Treatments for AD] cohort) underwent amyloid and tau positron emission tomography and answered several questionnaires related to behavioral attributes. Separately, we studied 117 mutation carriers from the DIAN (Dominant Inherited Alzheimer Network) study group cohort with amyloid positron emission tomography and behavioral data. Using partial least squares analysis, we identified latent variables relating amyloid or tau pathology with combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle. Results: In PREVENT-AD, lower neuroticism, neuropsychiatric burden, and higher education were associated with less amyloid deposition (p = .014). Lower neuroticism and neuropsychiatric features, along with higher measures of openness and extraversion, were related to less tau deposition (p = .006). In DIAN, lower neuropsychiatric burden and higher education were also associated with less amyloid (p = .005). The combination of these factors accounted for up to 14% of AD pathology. Conclusions: In the preclinical phase of both sporadic and autosomal dominant AD, multiple behavioral features were associated with AD pathology. These results may suggest potential pathways by which multidomain interventions might help delay AD onset or progression

    Amyloid and tau pathology associations with personality traits, neuropsychiatric symptoms, and cognitive lifestyle in the preclinical phases of sporadic and autosomal dominant Alzheimer’s disease

    Get PDF
    Background Major prevention trials for Alzheimer’s disease (AD) are now focusing on multidomain lifestyle interventions. However, the exact combination of behavioral factors related to AD pathology remains unclear. In 2 cohorts of cognitively unimpaired individuals at risk of AD, we examined which combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle (years of education or lifetime cognitive activity) related to the pathological hallmarks of AD, amyloid-β, and tau deposits. Methods A total of 115 older adults with a parental or multiple-sibling family history of sporadic AD (PREVENT-AD [PRe-symptomatic EValuation of Experimental or Novel Treatments for AD] cohort) underwent amyloid and tau positron emission tomography and answered several questionnaires related to behavioral attributes. Separately, we studied 117 mutation carriers from the DIAN (Dominant Inherited Alzheimer Network) study group cohort with amyloid positron emission tomography and behavioral data. Using partial least squares analysis, we identified latent variables relating amyloid or tau pathology with combinations of personality traits, neuropsychiatric symptoms, and cognitive lifestyle. Results In PREVENT-AD, lower neuroticism, neuropsychiatric burden, and higher education were associated with less amyloid deposition (p = .014). Lower neuroticism and neuropsychiatric features, along with higher measures of openness and extraversion, were related to less tau deposition (p = .006). In DIAN, lower neuropsychiatric burden and higher education were also associated with less amyloid (p = .005). The combination of these factors accounted for up to 14% of AD pathology. Conclusions In the preclinical phase of both sporadic and autosomal dominant AD, multiple behavioral features were associated with AD pathology. These results may suggest potential pathways by which multidomain interventions might help delay AD onset or progression

    Photodynamic agents with anti-metastatic activities

    Full text link
    A new concept in multifunctional anticancer agents is demonstrated. Tetrakis-(diisopropyl-guanidino) zinc phthalocyanine (Zn-DIGP) exhibits excellent properties as a photodynamic therapy (PDT) agent, as well as potential anti-metastatic activities in vivo. Zn-DIGP exhibits good cellular uptake and low toxicity in the dark (EC50 > 80 μM) and is well tolerated upon its intravenous injection into mice at 8 mg/kg. Upon photoexcitation with red laser light (660 nm), Zn-DIGP exhibits a high quantum yield for singlet oxygen formation (Φ ≈ 0.51) that results in potent phototoxicity to cell cultures (EC50 ≈ 0.16 μM). Zn-DIGP is also capable of inhibiting the formation of tumor colonies in the lungs of C57BL/6 mice injected with B16F10 cells. Zn-DIGP therefore inhibits cancer growth by both light-dependent and light-independent pathways. The anti-metastatic activities of Zn-DIGP possibly result from its ability to interfere with the signaling between chemokine CXCL10 and the G protein-coupled receptor CXCR3. Zn-DIGP is a competitive inhibitor of CXCR3 activation (IC50 = 3.8 μM) and selectively inhibits downstream events such as CXCL10-activated cell migration. Consistent with the presence of feedback regulation between CXCR3 binding and CXCL10 expression, Zn-DIGP causes overexpression of CXCL10. Interestingly, Zn-DIGP binds to CXCR3 without activating the receptor yet is able to cause endocytosis and degradation of this GPCR. To the best of our knowledge, Zn-DIGP is the first PDT agent that can facilitate the photodynamic treatment of primary tumors while simultaneously inhibiting the formation of metastatic tumor colonies by a light-independent mode of action
    • …
    corecore