2,932 research outputs found

    Maximum Likelihood Estimation of Triangular and Polygonal Distributions

    Full text link
    Triangular distributions are a well-known class of distributions that are often used as elementary example of a probability model. In the past, enumeration and order statistic-based methods have been suggested for the maximum likelihood (ML) estimation of such distributions. A novel parametrization of triangular distributions is presented. The parametrization allows for the construction of an MM (minorization--maximization) algorithm for the ML estimation of triangular distributions. The algorithm is shown to both monotonically increase the likelihood evaluations, and be globally convergent. Using the parametrization is then applied to construct an MM algorithm for the ML estimation of polygonal distributions. This algorithm is shown to have the same numerical properties as that of the triangular distribution. Numerical simulation are provided to demonstrate the performances of the new algorithms against established enumeration and order statistics-based methods

    Approximate Bayesian computation via the energy statistic

    Get PDF
    Approximate Bayesian computation (ABC) has become an essential part of the Bayesian toolbox for addressing problems in which the likelihood is prohibitively expensive or entirely unknown, making it intractable. ABC defines a pseudo-posterior by comparing observed data with simulated data, traditionally based on some summary statistics, the elicitation of which is regarded as a key difficulty. Recently, using data discrepancy measures has been proposed in order to bypass the construction of summary statistics. Here we propose to use the importance-sampling ABC (IS-ABC) algorithm relying on the so-called two-sample energy statistic. We establish a new asymptotic result for the case where both the observed sample size and the simulated data sample size increase to infinity, which highlights to what extent the data discrepancy measure impacts the asymptotic pseudo-posterior. The result holds in the broad setting of IS-ABC methodologies, thus generalizing previous results that have been established only for rejection ABC algorithms. Furthermore, we propose a consistent V-statistic estimator of the energy statistic, under which we show that the large sample result holds, and prove that the rejection ABC algorithm, based on the energy statistic, generates pseudo-posterior distributions that achieves convergence to the correct limits, when implemented with rejection thresholds that converge to zero, in the finite sample setting. Our proposed energy statistic based ABC algorithm is demonstrated on a variety of models, including a Gaussian mixture, a moving-average model of order two, a bivariate beta and a multivariate gg-and-kk distribution. We find that our proposed method compares well with alternative discrepancy measures.Comment: 25 pages, 6 figures, 5 table
    corecore