1,820 research outputs found

    Dynamical mapping method in nonrelativistic models of quantum field theory

    Get PDF
    The solutions of Heisenberg equations and two-particles eigenvalue problems for nonrelativistic models of current-current fermion interaction and N,ΘN, \Theta model are obtained in the frameworks of dynamical mapping method. The equivalence of different types of dynamical mapping is shown. The connection between renormalization procedure and theory of selfadjoint extensions is elucidated.Comment: 14 page

    Non Local Theories: New Rules for Old Diagrams

    Full text link
    We show that a general variant of the Wick theorems can be used to reduce the time ordered products in the Gell-Mann & Low formula for a certain class on non local quantum field theories, including the case where the interaction Lagrangian is defined in terms of twisted products. The only necessary modification is the replacement of the Stueckelberg-Feynman propagator by the general propagator (the ``contractor'' of Denk and Schweda) D(y-y';tau-tau')= - i (Delta_+(y-y')theta(tau-tau')+Delta_+(y'-y)theta(tau'-tau)), where the violations of locality and causality are represented by the dependence of tau,tau' on other points, besides those involved in the contraction. This leads naturally to a diagrammatic expansion of the Gell-Mann & Low formula, in terms of the same diagrams as in the local case, the only necessary modification concerning the Feynman rules. The ordinary local theory is easily recovered as a special case, and there is a one-to-one correspondence between the local and non local contributions corresponding to the same diagrams, which is preserved while performing the large scale limit of the theory.Comment: LaTeX, 14 pages, 1 figure. Uses hyperref. Symmetry factors added; minor changes in the expositio

    Thermodynamic Limit and Decoherence: Rigorous Results

    Full text link
    Time evolution operator in quantum mechanics can be changed into a statistical operator by a Wick rotation. This strict relation between statistical mechanics and quantum evolution can reveal deep results when the thermodynamic limit is considered. These results translate in a set of theorems proving that these effects can be effectively at work producing an emerging classical world without recurring to any external entity that in some cases cannot be properly defined. In a many-body system has been recently shown that Gaussian decay of the coherence is the rule with a duration of recurrence more and more small as the number of particles increases. This effect has been observed experimentally. More generally, a theorem about coherence of bulk matter can be proved. All this takes us to the conclusion that a well definite boundary for the quantum to classical world does exist and that can be drawn by the thermodynamic limit, extending in this way the deep link between statistical mechanics and quantum evolution to a high degree.Comment: 5 pages, no figures. Contribution to proceedings of DICE 2006 (Piombino, Italy, September 11-15, 2006

    Global Mutual Fund Industry Comparisons: Canada, The United Kingdom And The United States

    Get PDF
    The concept of mutual funds is older than many believe, originating in Holland over 230 years ago.  Through the years, mutual funds have evolved by allowing investors to invest their capital in various venues.  The structure of mutual funds in Canada, the United Kingdom, and the United States possess similar configurations.  The majority of funds in all three nations are invested in the equity market.  Although the structure may be the same, the size in terms of assets varies by these three countries.  This is not the only difference though; the expense ratio is greatly differentiated, dramatically affecting the amount of return that the investor will anticipate over time.  Assuming identical returns, the authors illustrate that over a hypothetical ten-year time period, your funds would grow the most in the United States, followed by the United Kingdom and finally Canada.  This analysis assumes comparable contemporary expense ratios of 1.4% for the United States, 1.63% for the United Kingdom, and 2.1% for Canada.  In addition, we make the assumption that these comparison countries are having investors procure funds in no-load mutual funds

    Haag-Ruelle scattering theory in presence of massless particles

    Full text link
    Within the framework of local quantum physics we construct a scattering theory of stable, massive particles without assuming mass gaps. This extension of the Haag-Ruelle theory is based on advances in the harmonic analysis of local operators. Our construction is restricted to theories complying with a regularity property introduced by Herbst. The paper concludes with a brief discussion of the status of this assumption.Comment: As appeared in Letters in Mathematical Physic

    Curie-Weiss model of the quantum measurement process

    Get PDF
    A hamiltonian model is solved, which satisfies all requirements for a realistic ideal quantum measurement. The system S is a spin-\half, whose zz-component is measured through coupling with an apparatus A=M+B, consisting of a magnet \RM formed by a set of N1N\gg 1 spins with quartic infinite-range Ising interactions, and a phonon bath \RB at temperature TT. Initially A is in a metastable paramagnetic phase. The process involves several time-scales. Without being much affected, A first acts on S, whose state collapses in a very brief time. The mechanism differs from the usual decoherence. Soon after its irreversibility is achieved. Finally the field induced by S on M, which may take two opposite values with probabilities given by Born's rule, drives A into its up or down ferromagnetic phase. The overall final state involves the expected correlations between the result registered in M and the state of S. The measurement is thus accounted for by standard quantum statistical mechanics and its specific features arise from the macroscopic size of the apparatus.Comment: 5 pages Revte

    Quantum control without access to the controlling interaction

    Get PDF
    In our model a fixed Hamiltonian acts on the joint Hilbert space of a quantum system and its controller. We show under which conditions measurements, state preparations, and unitary implementations on the system can be performed by quantum operations on the controller only. It turns out that a measurement of the observable A and an implementation of the one-parameter group exp(iAr) can be performed by almost the same sequence of control operations. Furthermore measurement procedures for A+B, for (AB+BA), and for i[A,B] can be constructed from measurements of A and B. This shows that the algebraic structure of the set of observables can be explained by the Lie group structure of the unitary evolutions on the joint Hilbert space of the measuring device and the measured system. A spin chain model with nearest neighborhood coupling shows that the border line between controller and system can be shifted consistently.Comment: 10 pages, Revte

    A Model for Integration and Interlinking of Idea Management Systems

    Get PDF
    This paper introduces the use of Semantic Web technologies for the Idea Management Systems as a gap closer between heterogeneous software and achieving interoperability. We present a model that proposes how and what kind of rich metadata annotations to apply in the domain of Idea Management Systems. In addition, as a part of our model, we present a Generic Idea and Innovation Management Ontology (GI2MO). The described model is backed by a set of use cases followed by evaluations that prove how Semantic Web can work as tool to create new opportunities and leverage the contemporary Idea Management legacy systems into the next level

    Wedge-Local Quantum Fields and Noncommutative Minkowski Space

    Full text link
    Within the setting of a recently proposed model of quantum fields on noncommutative Minkowski spacetime, the consequences of the consistent application of the proper, untwisted Poincare group as the symmetry group are investigated. The emergent model contains an infinite family of fields which are labelled by different noncommutativity parameters, and related to each other by Lorentz transformations. The relative localization properties of these fields are investigated, and it is shown that to each field one can assign a wedge-shaped localization region of Minkowski space. This assignment is consistent with the principles of covariance and locality, i.e. fields localized in spacelike separated wedges commute. Regarding the model as a non-local, but wedge-local, quantum field theory on ordinary (commutative) Minkowski spacetime, it is possible to determine two-particle S-matrix elements, which turn out to be non-trivial. Some partial negative results concerning the existence of observables with sharper localization properties are also obtained.Comment: Version to appear in JHEP, 27 page

    Master integrals for massive two-loop Bhabha scattering in QED

    Full text link
    We present a set of scalar master integrals (MIs) needed for a complete treatment of massive two-loop corrections to Bhabha scattering in QED, including integrals with arbitrary fermionic loops. The status of analytical solutions for the MIs is reviewed and examples of some methods to solve MIs analytically are worked out in more detail. Analytical results for the pole terms in epsilon of so far unknown box MIs with five internal lines are given.Comment: 23 pages, 5 tables, 12 figures, references added, appendix B enlarge
    corecore