180 research outputs found

    Optical manipulation for studies of collisional dynamics of micron-sized droplets under gravity

    Full text link
    A new experimental technique for creating and imaging collisions of micron-sized droplets settling under gravity is presented. A pair of glycerol droplets is suspended in air by means of two optical traps. The droplet relative velocities are determined by the droplet sizes. The impact parameter is precisely controlled by positioning the droplets using the two optical traps. The droplets are released by turning off the trapping light using electro-optical modulators. The motion of the sedimenting droplets is then captured by two synchronized high-speed cameras, at a frame rate of up to 63 kHz. The method allows the direct imaging of the collision of droplets without the influence of the optical confinement imposed by the trapping force. The method will facilitate efficient studies of the microphysics of neutral, as well as charged, liquid droplets and their interactions with light, electric field and thermodynamic environment, such as temperature or vapor concentration.Comment: 13 pages, 8 figures, 1 tabl

    A microfluidic device for the study of the orientational dynamics of microrods

    Full text link
    We describe a microfluidic device for studying the orientational dynamics of microrods. The device enables us to experimentally investigate the tumbling of microrods immersed in the shear flow in a microfluidic channel with a depth of 400 mu and a width of 2.5 mm. The orientational dynamics was recorded using a 20 X microscopic objective and a CCD camera. The microrods were produced by shearing microdroplets of photocurable epoxy resin. We show different examples of empirically observed tumbling. On the one hand we find that short stretches of the experimentally determined time series are well described by fits to solutions of Jeffery's approximate equation of motion [Jeffery, Proc. R. Soc. London. 102 (1922), 161-179]. On the other hand we find that the empirically observed trajectories drift between different solutions of Jeffery's equation. We discuss possible causes of this orbit drift.Comment: 11 pages, 8 figure

    Aperiodic tumbling of microrods advected in a microchannel flow

    Full text link
    We report on an experimental investigation of the tumbling of microrods in the shear flow of a microchannel (40 x 2.5 x 0.4 mm). The rods are 20 to 30 microns long and their diameters are of the order of 1 micron. Images of the centre-of-mass motion and the orientational dynamics of the rods are recorded using a microscope equipped with a CCD camera. A motorised microscope stage is used to track individual rods as they move along the channel. Automated image analysis determines the position and orientation of a tracked rods in each video frame. We find different behaviours, depending on the particle shape, its initial position, and orientation. First, we observe periodic as well as aperiodic tumbling. Second, the data show that different tumbling trajectories exhibit different sensitivities to external perturbations. These observations can be explained by slight asymmetries of the rods. Third we observe that after some time, initially periodic trajectories lose their phase. We attribute this to drift of the centre of mass of the rod from one to another stream line of the channel flow.Comment: 14 pages, 8 figures, as accepted for publicatio

    Spinning and tumbling of micron-sized triangles in a micro-channel shear flow

    Full text link
    We report on measurements of the angular dynamics of micron-sized equilaterally triangular platelets suspended in a micro-channel shear flow. Our measurements confirm that such particles spin and tumble like a spheroid in a simple shear. Since the triangle has corners we can observe the spinning directly. In general the spinning frequency is different from the tumbling frequency, and the spinning is affected by tumbling. This gives rise to doubly-periodic angular dynamics.Comment: 8 pages, 7 figures, supplementary material, *) these authors contributed equall

    Isotope shift in the electron affinity of chlorine

    Full text link
    The specific mass shift in the electron affinity between ^{35}Cl and ^{37}Cl has been determined by tunable laser photodetachment spectroscopy to be -0.51(14) GHz. The isotope shift was observed as a difference in the onset of the photodetachment process for the two isotopes. In addition, the electron affinity of Cl was found to be 29138.59(22) cm^{-1}, giving a factor of 2 improvement in the accuracy over earlier measurements. Many-body calculations including lowest-order correlation effects demonstrates the sensitivity of the specific mass shift and show that the inclusion of higher-order correlation effects would be necessary for a quantitative description.Comment: 16 pages, 6 figures, LaTeX2e, amsmat

    Resonance structure in the Li^- photodetachment cross section

    Full text link
    We report on the first observation of resonance structure in the total cross section for the photodetachment of Li^-. The structure arises from the autodetaching decay of doubly excited ^1P states of Li^- that are bound with respect to the 3p state of the Li atom. Calculations have been performed for both Li^- and H^- to assist in the identification of these resonances. The lowest lying resonance is a symmetrically excited intrashell resonance. Higher lying asymmetrically excited intershell states are observed which converge on the Li(3p) limit.Comment: 4 pages, 2 figure, 19 references, RevTeX, figures in ep

    Photodetachment study of He^- quartet resonances below the He(n=3) thresholds

    Get PDF
    The photodetachment cross section of He^- has been measured in the photon energy range 2.9 eV to 3.3 eV in order to investigate doubly excited states. Measurements were made channel specific by selectively detecting the residual He atoms left in a particular excited state following detachment. Three Feshbach resonances were found in the He(1s2p ^3P)+e^-(epsilon p) partial cross section: a ^4S resonance below the He(1s3s ^3S) threshold and two ^4P resonances below the He(1s3p ^3P) threshold. The measured energies of these doubly excited states are 2.959260(6) eV, 3.072(7) eV and 3.26487(4) eV. The corresponding widths are found to be 0.20(2) meV, 50(5) meV and 0.61(5) meV. The measured energies agree well with recent theoretical predictions for the 1s3s4s ^4S, 1s3p^2 ^4P and 1s3p4p ^4P states, respectively, but the widths deviate noticeably from calculations for 1s3p^2 ^4P and 1s3p4p ^4P states.Comment: 10 pages, 3 figures, LaTeX2e scrartcl, amsmath. Accepted by Journal of Physics B; minor changes after referee repor
    corecore