180 research outputs found
Optical manipulation for studies of collisional dynamics of micron-sized droplets under gravity
A new experimental technique for creating and imaging collisions of
micron-sized droplets settling under gravity is presented. A pair of glycerol
droplets is suspended in air by means of two optical traps. The droplet
relative velocities are determined by the droplet sizes. The impact parameter
is precisely controlled by positioning the droplets using the two optical
traps. The droplets are released by turning off the trapping light using
electro-optical modulators. The motion of the sedimenting droplets is then
captured by two synchronized high-speed cameras, at a frame rate of up to 63
kHz. The method allows the direct imaging of the collision of droplets without
the influence of the optical confinement imposed by the trapping force. The
method will facilitate efficient studies of the microphysics of neutral, as
well as charged, liquid droplets and their interactions with light, electric
field and thermodynamic environment, such as temperature or vapor
concentration.Comment: 13 pages, 8 figures, 1 tabl
A microfluidic device for the study of the orientational dynamics of microrods
We describe a microfluidic device for studying the orientational dynamics of
microrods. The device enables us to experimentally investigate the tumbling of
microrods immersed in the shear flow in a microfluidic channel with a depth of
400 mu and a width of 2.5 mm. The orientational dynamics was recorded using a
20 X microscopic objective and a CCD camera. The microrods were produced by
shearing microdroplets of photocurable epoxy resin. We show different examples
of empirically observed tumbling. On the one hand we find that short stretches
of the experimentally determined time series are well described by fits to
solutions of Jeffery's approximate equation of motion [Jeffery, Proc. R. Soc.
London. 102 (1922), 161-179]. On the other hand we find that the empirically
observed trajectories drift between different solutions of Jeffery's equation.
We discuss possible causes of this orbit drift.Comment: 11 pages, 8 figure
Aperiodic tumbling of microrods advected in a microchannel flow
We report on an experimental investigation of the tumbling of microrods in
the shear flow of a microchannel (40 x 2.5 x 0.4 mm). The rods are 20 to 30
microns long and their diameters are of the order of 1 micron. Images of the
centre-of-mass motion and the orientational dynamics of the rods are recorded
using a microscope equipped with a CCD camera. A motorised microscope stage is
used to track individual rods as they move along the channel. Automated image
analysis determines the position and orientation of a tracked rods in each
video frame. We find different behaviours, depending on the particle shape, its
initial position, and orientation. First, we observe periodic as well as
aperiodic tumbling. Second, the data show that different tumbling trajectories
exhibit different sensitivities to external perturbations. These observations
can be explained by slight asymmetries of the rods. Third we observe that after
some time, initially periodic trajectories lose their phase. We attribute this
to drift of the centre of mass of the rod from one to another stream line of
the channel flow.Comment: 14 pages, 8 figures, as accepted for publicatio
Spinning and tumbling of micron-sized triangles in a micro-channel shear flow
We report on measurements of the angular dynamics of micron-sized
equilaterally triangular platelets suspended in a micro-channel shear flow. Our
measurements confirm that such particles spin and tumble like a spheroid in a
simple shear. Since the triangle has corners we can observe the spinning
directly. In general the spinning frequency is different from the tumbling
frequency, and the spinning is affected by tumbling. This gives rise to
doubly-periodic angular dynamics.Comment: 8 pages, 7 figures, supplementary material, *) these authors
contributed equall
Isotope shift in the electron affinity of chlorine
The specific mass shift in the electron affinity between ^{35}Cl and ^{37}Cl
has been determined by tunable laser photodetachment spectroscopy to be
-0.51(14) GHz. The isotope shift was observed as a difference in the onset of
the photodetachment process for the two isotopes. In addition, the electron
affinity of Cl was found to be 29138.59(22) cm^{-1}, giving a factor of 2
improvement in the accuracy over earlier measurements. Many-body calculations
including lowest-order correlation effects demonstrates the sensitivity of the
specific mass shift and show that the inclusion of higher-order correlation
effects would be necessary for a quantitative description.Comment: 16 pages, 6 figures, LaTeX2e, amsmat
Resonance structure in the Li^- photodetachment cross section
We report on the first observation of resonance structure in the total cross
section for the photodetachment of Li^-. The structure arises from the
autodetaching decay of doubly excited ^1P states of Li^- that are bound with
respect to the 3p state of the Li atom. Calculations have been performed for
both Li^- and H^- to assist in the identification of these resonances. The
lowest lying resonance is a symmetrically excited intrashell resonance. Higher
lying asymmetrically excited intershell states are observed which converge on
the Li(3p) limit.Comment: 4 pages, 2 figure, 19 references, RevTeX, figures in ep
Photodetachment study of He^- quartet resonances below the He(n=3) thresholds
The photodetachment cross section of He^- has been measured in the photon
energy range 2.9 eV to 3.3 eV in order to investigate doubly excited states.
Measurements were made channel specific by selectively detecting the residual
He atoms left in a particular excited state following detachment. Three
Feshbach resonances were found in the He(1s2p ^3P)+e^-(epsilon p) partial cross
section: a ^4S resonance below the He(1s3s ^3S) threshold and two ^4P
resonances below the He(1s3p ^3P) threshold. The measured energies of these
doubly excited states are 2.959260(6) eV, 3.072(7) eV and 3.26487(4) eV. The
corresponding widths are found to be 0.20(2) meV, 50(5) meV and 0.61(5) meV.
The measured energies agree well with recent theoretical predictions for the
1s3s4s ^4S, 1s3p^2 ^4P and 1s3p4p ^4P states, respectively, but the widths
deviate noticeably from calculations for 1s3p^2 ^4P and 1s3p4p ^4P states.Comment: 10 pages, 3 figures, LaTeX2e scrartcl, amsmath. Accepted by Journal
of Physics B; minor changes after referee repor
- …
