274 research outputs found
Comment on "Theory of metal-insulator transitions in gated semiconductors" (B. L. Altshuler and D. L. Maslov, Phys. Rev. Lett. 82, 145 (1999))
In a recent Letter, Altshuler and Maslov propose a model which attributes the
anomalous temperature and field dependence of the resistivity of
two-dimensional electron (or hole) systems to the charging and discharging of
traps in the oxide (spacer), rather than to intrinsic behavior of interacting
particles associated with a conductor-insulator transition in two dimensions.
We argue against this model based on existing experimental evidence.Comment: 1 page; submitted to PR
Deconstruction of the Trap Model for the New Conducting State in 2D
A key prediction of the trap model for the new conducting state in 2D is that
the resistivity turns upwards below some characteristic temperature, . Altshuler, Maslov, and Pudalov have argued that the reason why no upturn
has been observed for the low density conducting samples is that the
temperature was not low enough in the experiments. We show here that within the Altshuler, Maslov, and Pudalov trap model actually increases
with decreasing density, contrary to their claim. Consequently, the trap model
is not consistent with the experimental trends.Comment: Published version of Deconstructio
Novel Properties of The Apparent Metal-Insulator Transition in Two-Dimensional Systems
The low-temperature conductivity of low-density, high-mobility,
two-dimensional hole systems in GaAs was studied. We explicitly show that the
metal-insulator transition, observed in these systems, is characterized by a
well-defined critical density, p_0c. We also observe that the low-temperature
conductivity of these systems depends linearly on the hole density, over a wide
density range. The high-density linear conductivity extrapolates to zero at a
density close to the critical density.Comment: 4 Figure
Observation of the Metal-Insulator Transition in Two-Dimensional n-type GaAs
The observation of a carrier-density driven metal-insulator transition in
n-type GaAs-based heterostructure is reported. Although weaker than in
comparable-quality p-type GaAs samples, the main features of the transition are
rather similar.Comment: 3 pages, 3 figure
Charged impurity scattering limited low temperature resistivity of low density silicon inversion layers
We calculate within the Boltzmann equation approach the charged impurity
scattering limited low temperature electronic resistivity of low density
-type inversion layers in Si MOSFET structures. We find a rather sharp
quantum to classical crossover in the transport behavior in the K
temperature range, with the low density, low temperature mobility showing a
strikingly strong non-monotonic temperature dependence, which may qualitatively
explain the recently observed anomalously strong temperature dependent
resistivity in low-density, high-mobility MOSFETs.Comment: 5 pages, 2 figures, will appear in PRL (12 July, 1999
Coexistence of Weak Localization and a Metallic Phase in Si/SiGe Quantum Wells
Magnetoresistivity measurements on p-type Si/SiGe quantum wells reveal the
coexistence of a metallic behavior and weak localization. Deep in the metallic
regime, pronounced weak localization reduces the metallic behavior around zero
magnetic field without destroying it. In the insulating phase, a positive
magnetoresistivity emerges close to B=0, possibly related to spin-orbit
interactions.Comment: 4 pages, 3 figure
Parallel Magnetic Field Induced Transition in Transport in the Dilute Two-Dimensional Hole System in GaAs
A magnetic field applied parallel to the two-dimensional hole system in the
GaAs/AlGaAs heterostructure, which is metallic in the absence of an external
magnetic field, can drive the system into insulating at a finite field through
a well defined transition. The value of resistivity at the transition is found
to depend strongly on density
Classical versus Quantum Effects in the B=0 Conducting Phase in Two Dimensions
In the dilute two-dimensional electron system in silicon, we show that the
temperature below which Shubnikov-de Haas oscillations become apparent is
approximately the same as the temperature below which an exponential decrease
in resistance is seen in B=0, suggesting that the anomalous behavior in zero
field is observed only when the system is in a degenerate (quantum) state. The
temperature dependence of the resistance is found to be qualitatively similar
in B=0 and at integer Landau level filling factors.Comment: 3 pages, 3 figure
Universal scaling, beta function, and metal-insulator transitions
We demonstrate a universal scaling form of longitudinal resistance in the
quantum critical region of metal-insulator transitions, based on numerical
results of three-dimensional Anderson transitions (with and without magnetic
field), two-dimensional quantum Hall plateau to insulator transition, as well
as experimental data of the recently discovered two-dimensional metal-insulator
transition. The associated reflection symmetry and a peculiar logarithmic form
of the beta function exist over a wide range in which the resistance can change
by more than one order of magnitude. Interesting implications for the
two-dimensional metal-insulator transition are discussed.Comment: 4 pages, REVTEX, 4 embedded figures; minor corrections to figures and
tex
- …
