25 research outputs found
Elevated Fibroblast growth factor 21 (FGF21) in obese, insulin resistant states is normalised by the synthetic retinoid Fenretinide in mice
The authors would like to thank undergraduate student Aleksandra Kowalczuk (University of Aberdeen) for assisting in experiments and Dr. Emma K. Lees (School of Health Sciences, Liverpool Hope University, Liverpool, UK) for invaluable discussions concerning the regulation of FGF21. We thank Dr. Calum Sutherland and Dr. Amy Cameron (both Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK) for technical support and expertise in performing hepatocyte studies. Fenretinide was a generous gift of T. Martin (Johnson & Johnson, New Brunswick, NJ) and U. Thumeer (Cilag AG, Schaffhausen, Switzerland), for use completely without restriction or obligation. Quantitative-PCR was carried out using the qPCR Core Facility (Institute of Medical Sciences, University of Aberdeen). RNA-sequencing was carried out at the University of Aberdeen Centre for Genome Enabled Biology and Medicine. Pancreas histology was performed by Dr Linda Davidson (Department of Histology, Aberdeen Royal Infirmary, NHS Grampian, Foresterhill Health Campus, Aberdeen, UK). This study was supported by the British Heart Foundation Intermediate Basic Research Fellowship FS/09/026 to N. Mody, RCUK fellowship to MD, EFSD/Lilly Programme Grant to MD and N. Mody, Tenovus Scotland grants G10/04 and G14/14 to N. Mody, University of Aberdeen Centre for Genome Enabled Biology and Medicine (CGEBM) PhD studentship to N. Morrice and Biotechnology and Biological Sciences Research Council studentship to GDM.Peer reviewedPublisher PD
Cord blood fatty acid‐binding protein‐4 levels are upregulated at both ends of the birthweight spectrum
Serum concentrations and tissue expression of components of insulin-like growth factor-axis in females with type 2 diabetes mellitus and obesity: The influence of very-low-calorie diet
Serum Preadipocyte Factor-1 Concentrations in Females with Obesity and Type 2 Diabetes Mellitus: The Influence of Very Low Calorie Diet, Acute Hyperinsulinemia, and Fenofibrate Treatment
The Effect of Very-Low-Calorie Diet on mRNA Expression of Inflammation-Related Genes in Subcutaneous Adipose Tissue and Peripheral Monocytes of Obese Patients with Type 2 Diabetes Mellitus
Abstract
Context:
Low-grade inflammation links obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases.
Objective:
To explore the expression profile of genes involved in inflammatory pathways in adipose tissue and peripheral monocytes (PM) of obese patients with and without T2DM at baseline and after dietary intervention.
Design:
Two-week intervention study with very-low-calorie diet (VLCD).
Setting:
University hospital.
Patients:
Twelve obese females with T2DM, 8 obese nondiabetic females (OB) and 15 healthy age-matched females.
Intervention:
Two weeks of VLCD (2500 kJ/d).
Main Outcome Measures:
Metabolic parameters, circulating cytokines, hormones, and mRNA expression of 39 genes in sc adipose tissue (SCAT) and PM.
Results:
Both T2DM and OB group had significantly increased serum concentrations of circulating proinflammatory factors (C-reactive protein, TNFα, IL-6, IL-8), mRNA expression of macrophage antigen CD68 and proinflammatory chemokines (CCL-2, -3, -7, -8, -17, -22) in SCAT and complementary chemokine receptors (CCR-1, -2, -3, -5) and other proinflammatory receptors (toll-like receptor 2 and 4, TNF receptor superfamily 1A and 1B, IL-6R) in PM, with OB group showing less pronounced chemoattracting and proinflammatory profile compared to T2DM group. In T2DM patients VLCD decreased body weight, improved metabolic profile, and decreased mRNA expression of up-regulated CCRs in PM and chemokines [CCL 8, chemokine (C-X-C motif) ligand 10] in SCAT. VLCD markedly increased mRNA expression of T-lymphocyte attracting chemokine CCL-17 in SCAT.
Conclusion:
Obese patients with and without T2DM have increased mRNA expression of chemotactic and proinflammatory factors in SCAT and expression of corresponding receptors in PM. Two weeks of VLCD significantly improved this profile in T2DM patients.
</jats:sec
Effects of Dance Sport Program on the Change of Body Composition, Blood variables in Middle-Aged Obese Women
The Effect of Very-Low-Calorie Diet on mRNA Expression of Inflammation-Related Genes in Subcutaneous Adipose Tissue and Peripheral Monocytes of Obese Patients with Type 2 Diabetes Mellitus
The Possible Role of mRNA Expression Changes of GH/IGF-1/Insulin Axis Components in Subcutaneous Adipose Tissue in Metabolic Disturbances of Patients With Acromegaly
We explored the effect of chronically elevated circulating levels of growth hormone (GH)/insulin-like-growth-factor-1 (IGF-1) on mRNA expression of GH/IGF-1/insulin axis components and p85alpha subunit of phosphoinositide-3-kinase (p85alpha) in subcutaneous adipose tissue (SCAT) of patients with active acromegaly and compared these findings with healthy control subjects in order to find its possible relationships with insulin resistance and body composition changes. Acromegaly group had significantly decreased percentage of truncal and whole body fat and increased homeostasis model assessment-insulin resistance (HOMA-IR). In SCAT, patients with acromegaly had significantly increased IGF-1 and IGF-binding protein-3 (IGFBP-3) expression that both positively correlated with serum GH. P85alpha expression in SCAT did not differ from control group. IGF-1 and IGFBP-3 expression in SCAT were not independently associated with percentage of truncal and whole body fat or with HOMA-IR while IGFBP-3 expression in SCAT was an independent predictor of insulin receptor as well as of p85alpha expression in SCAT. Our data suggest that GH overproduction in acromegaly group increases IGF-1 and IGFBP-3 expression in SCAT while it does not affect SCAT p85alpha expression. Increased IGF-1 or IGFBP-3 in SCAT of acromegaly group do not appear to contribute to systemic differences in insulin sensitivity but may have local regulatory effects in SCAT of patients with acromegaly.</jats:p
