34 research outputs found
Emerging aspects of nanotoxicology in health and disease: From agriculture and food sector to cancer therapeutics
Nanotechnology is an evolving scientific field that has allowed the manufacturing of materials with novel physicochemical and biological properties, offering a wide spectrum of potential applications. Properties of nanoparticles that contribute to their usefulness include their markedly increased surface area in relation to mass, surface reactivity and insolubility, ability to agglomerate or change size in different media and enhanced endurance over conventional-scale substance. Here, we review nanoparticle classification and their emerging applications in several fields; from active food packaging to drug delivery and cancer research. Nanotechnology has exciting therapeutic applications, including novel drug delivery for the treatment of cancer. Additionally, we discuss that exposure to nanostructures incorporated to polymer composites, may result in potential human health risks. Therefore, the knowledge of processes, including absorption, distribution, metabolism and excretion, as well as careful toxicological assessment is critical in order to determine the effects of nanomaterials in humans and other biological systems. Expanding the knowledge of nanoparticle toxicity will facilitate designing of safer nanocomposites and their application in a beneficial manner
Self-aggregation of squid cranial cartilage proteoglycans
Squid cranial cartilage has been found to contain three different proteoglycan populations, two of which form aggregates (Vynios, D.H. and Tsiganos, C. P., Biochim. Biophys. Acta 1033: 139-147, 1990). The aggregation involves interaction of their protein cores as assessed by electron microscopy and biochemical data. Aggregating oligopeptides were isolated after mild trypsin digestion which inhibited self-aggregation of proteoglycans. The aggregation does not involve interaction of the side chains of polar amino acids and evidence is provided that it is mediated through hydrophobic interaction. It is enhanced upon concentration or incubation of the samples at 37 degrees C
Characterization of glycosaminoglycans from human normal and scoliotic nasal cartilage with particular reference to dermatan sulfate
Syndecans as modulators and potential pharmacological targets in cancer progression
Extracellular matrix (ECM) components form a dynamic network of key importance for cell function and properties. Key macromolecules in this interplay are syndecans (SDCs), a family of transmembrane heparan sulfate proteoglycans (HSPGs). Specifically, heparan sulfate (HS) chains with their different sulfation pattern have the ability to interact with growth factors and their receptors in tumor microenvironment, promoting the activation of different signaling cascades that regulate tumor cell behavior. The affinity of HS chains with ligands is altered during malignant conditions because of the modification of chain sequence/sulfation pattern. Furthermore, matrix degradation enzymes derived from the tumor itself or the tumor microenvironment, like heparanase and matrix metalloproteinases (MMPs), ADAM as well as ADΑMTS are involved in the cleavage of SDCs ectodomain at the HS and protein core level, respectively. Such released soluble syndecans shed syndecans in the extracellular matrix interact in an autocrine or paracrine manner with the tumor or/and stromal cells. Shed syndecans, upon binding to several matrix effectors, such as growth factors, chemokines and cytokines, have the ability to act as competitive inhibitors for membrane PGs, and modulate the inflammatory microenvironment of cancer cells. It is notable that syndecans and their soluble counterparts may affect either the behavior of cancer cells and/or their microenvironment during cancer progression. The importance of these molecules has been highlighted since HSPGs have been proposed as prognostic markers of solid tumors and hematopoietic malignancies. Going a step further down the line, the multi-actions of syndecans in many levels make them appealing as potential pharmacological targets, either by targeting directly the tumor or indirectly the adjacent stroma
Evaluation of lumican effects on morphology of invading breast cancer cells, expression of integrins and downstream signaling
The small leucine-rich proteoglycan lumican regulates estrogen receptors (ERs)-associated functional properties of breast cancer cells, expression of matrix macromolecules, and epithelial-to-mesenchymal transition. However, it is not known whether the ER-dependent lumican effects on breast cancer cells are related to the expression of integrins and their intracellular signaling pathways. Here, we analyzed the effects of lumican in three breast cancer cell lines: the highly metastatic ER\u3b2-positive MDA-MB-231, cells with the respective ER\u3b2-suppressed (shER\u3b2MDA-MB-231), and lowly invasive ER\u3b1-positive MCF-7/c breast cancer cells. Scanning electron microscopy, confocal microscopy, real-time PCR, western blot, and cell adhesion assays were performed. Lumican effects on breast cancer cell morphology were also investigated in 3-dimensional collagen cultures. Lumican treatment induced cell\u2013cell contacts and cell grouping and inhibited microvesicles and microvilli formation. The expression of the cell surface adhesion receptor CD44, its isoform and variants, hyaluronan (HA), and HA synthases was also investigated. Lumican inhibited the expression of CD44 and HA synthases, and its effect on cell adhesion revealed a major role of \u3b11, \u3b12, \u3b13, \u3b1V\u3b23, and \u3b1V\u3b25 integrins in MDA-MB-231 cells, but not in MCF-7/c cells. Lumican upregulated the expression of \u3b12 and \u3b21 integrin subunits both in MDA-MB-231 and in shER\u3b2MDA-MB-231 as compared to MCF-7/c cells. Downstream signaling pathways for integrins, such as FAK, ERK 1/2 MAPK 42/44, and Akt, were found to be downregulated by lumican. Our data shed light to the molecular mechanisms responsible for the anticancer activity of lumican in invasive breast cancer
Matrix proteoglycans are markedly affected in advanced laryngeal squamous cell carcinoma
AbstractProteoglycans (PGs) are implicated in the growth and progression of malignant tumors. In this study, we examined the concentration and localization of PGs in advanced (stage IV) laryngeal squamous cell carcinoma (LSCC) and compared with human normal larynx (HNL). LSCC and HNL sections were examined immunohistochemically with a panel of antibodies, and tissues extracts were analyzed by biochemical methods including immunoblotting and high performance liquid chromatography (HPLC). The results demonstrated significant destruction of cartilage in LSCC, which was followed by marked decrease of aggrecan and link protein. In contrast to the loss of aggrecan in LSCC, accumulation of versican and decorin was observed in the tumor-associated stroma. Biochemical analyses indicated that aggrecan, versican, decorin and biglycan comprise the vast majority of total PGs in both healthy and cancerous tissue. In LSCC the absolute amounts of KS/CS/DS-containing PGs were dramatically decreased about 18-fold in comparison to HNL. This decrease is due to the loss of aggrecan. Disaccharide analysis of CS/DSPGs from LSCC showed a significant reduction of 6-sulfated Δ-disaccharides (Δdi-6S) with a parallel increase of 4-sulfated Δ-disaccharides (Δdi-4S) as compared to HNL. The obtained data clearly demonstrate that tumor progression is closely related to specific alteration of matrix PGs in LSCC. The altered composition of PGs in cartilage, as well as in tumor-associated stroma, is crucial for the biological behaviour of cancer cells in the diseased tissue
