53,593 research outputs found
Pentaquark in nuclear matter and hypernuclei
We study the properties of the in nuclear matter and
hypernuclei within the quark mean-field (QMF) model, which has been
successfully used for the description of ordinary nuclei and
hypernuclei. With the assumption that the non-strange mesons couple only to the
and quarks inside baryons, a sizable attractive potential of the
in nuclear matter is achieved as a consequence of the cancellation
between the attractive scalar potential and the repulsive vector potential. We
investigate the single-particle energies in light, medium, and heavy
nuclei. More bound states are obtained in hypernuclei in comparison
with those in hypernuclei.Comment: 16 pages, 5 figure
Effect of spin relaxations on the spin mixing conductances for a bilayer structure
The spin current can result in a spin-transfer torque in the
normal-metal(NM)|ferromagnetic-insulator(FMI) or
normal-metal(NM)|ferromagnetic-metal(FMM) bilayer. In the earlier study on this
issue, the spin relaxations were ignored or introduced phenomenologically. In
this paper, considering the FMM or FMI with spin relaxations described by a
non-Hermitian Hamiltonian, we derive an effective spin-transfer torque and an
effective spin mixing conductance in the non-Hermitian bilayer. The dependence
of the effective spin mixing conductance on the system parameters (such as
insulating gap, \textit{s-d} coupling, and layer thickness) as well as the
relations between the real part and the imaginary part of the effective spin
mixing conductance are given and discussed. We find that the effective spin
mixing conductance can be enhanced in the non-Hermitian system. This provides
us with the possibility to enhance the spin mixing conductance
Superfluidity of hyperons in neutron stars
We study the superfluidity of hyperons in neutron star
matter and neutron stars. We use the relativistic mean field (RMF) theory to
calculate the properties of neutron star matter. In the RMF approach, the
meson-hyperon couplings are constrained by reasonable hyperon potentials that
include the updated information from recent developments in hypernuclear
physics. To examine the pairing gap of hyperons, we employ
several interactions based on the Nijmegen models and used in
double- hypernuclei studies. It is found that the maximal pairing gap
obtained is a few tenths of a MeV. The magnitude and the density region of the
pairing gap are dependent on the interaction and the treatment
of neutron star matter. We calculate neutron star properties and find that
whether the superfluidity of hyperons exists in the core of
neutron stars mainly depends on the interaction used.Comment: 22 pages, 2 Tables, 6 Figur
H-infinity state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays
This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the state estimation problem is investigated for a class of discrete time-delay nonlinear complex networks with randomly occurring phenomena from sensor measurements. The randomly occurring phenomena include randomly occurring sensor saturations (ROSSs) and randomly varying sensor delays (RVSDs) that result typically from networked environments. A novel sensor model is proposed to describe the ROSSs and the RVSDs within a unified framework via two sets of Bernoulli-distributed white sequences with known conditional probabilities. Rather than employing the commonly used Lipschitz-type function, a more general sector-like nonlinear function is used to describe the nonlinearities existing in the network. The purpose of the addressed problem is to design a state estimator to estimate the network states through available output measurements such that, for all probabilistic sensor saturations and sensor delays, the dynamics of the estimation error is guaranteed to be exponentially mean-square stable and the effect from the exogenous disturbances to the estimation accuracy is attenuated at a given level by means of an -norm. In terms of a novel LyapunovâKrasovskii functional and the Kronecker product, sufficient conditions are established under which the addressed state estimation problem is recast as solving a convex optimization problem via the semidefinite programming method. A simulation example is provided to show the usefulness of the proposed state estimation conditions.This work was supported in part by the Engineering and Physical Sciences
Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61028008, 61134009, 61104125 and 60974030, the Natural
Science Foundation of Universities in Anhui Province of China under Grant KJ2011B030, and the Alexander von Humboldt Foundation of Germany
Shock wave induced vaporization of porous solids
Strong shock waves generated by hypervelocity impact can induce vaporization in solid materials. To pursue knowledge of the chemical species in the shock-induced vapors, one needs to design experiments that will drive the system to such thermodynamic states that sufficient vapor can be generated for investigation. It is common to use porous media to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens [J. Appl. Phys. 43, 2443 (1972)] and Ahrens and O'Keefe [The Moon 4, 214 (1972)] to higher distentions (up to five) and improved their method with a different impedance match calculation scheme and augmented their model with recent thermodynamic and Hugoniot data of metals, minerals, and polymers. Although we reconfirmed the competing effects reported in the previous studies: (1) increase of entropy production and (2) decrease of impedance match, when impacting materials with increasing distentions, our calculations did not exhibit optimal entropy-generating distention. For different materials, very different impact velocities are needed to initiate vaporization. For aluminum at distention (m)<2.2, a minimum impact velocity of 2.7 km/s is required using tungsten projectile. For ionic solids such as NaCl at distention <2.2, 2.5 km/s is needed. For carbonate and sulfate minerals, the minimum impact velocities are much lower, ranging from less than 1 to 1.5 km/s
Modification of nucleon properties in nuclear matter and finite nuclei
We present a model for the description of nuclear matter and finite nuclei,
and at the same time, for the study of medium modifications of nucleon
properties. The nucleons are described as nontopological solitons which
interact through the self-consistent exchange of scalar and vector mesons. The
model explicitly incorporates quark degrees of freedom into nuclear many-body
systems and provides satisfactory results on the nuclear properties. The
present model predicts a significant increase of the nucleon radius at normal
nuclear matter density. It is very interesting to see the nucleon properties
change from the nuclear surface to the nuclear interior.Comment: 22 pages, 10 figure
New Developments in Tourism and Hotel Demand Modeling and Forecasting
Abstract
Purpose
The purpose of the study is to review recent studies published from 2007-2015 on tourism and hotel demand modeling and forecasting with a view to identifying the emerging topics and methods studied and to pointing future research directions in the field.
Design/Methodology/approach
Articles on tourism and hotel demand modeling and forecasting published in both science citation index (SCI) and social science citation index (SSCI) journals were identified and analyzed.
Findings
This review found that the studies focused on hotel demand are relatively less than those on tourism demand. It is also observed that more and more studies have moved away from the aggregate tourism demand analysis, while disaggregate markets and niche products have attracted increasing attention. Some studies have gone beyond neoclassical economic theory to seek additional explanations of the dynamics of tourism and hotel demand, such as environmental factors, tourist online behavior and consumer confidence indicators, among others. More sophisticated techniques such as nonlinear smooth transition regression, mixed-frequency modeling technique and nonparametric singular spectrum analysis have also been introduced to this research area.
Research limitations/implications
The main limitation of this review is that the articles included in this study only cover the English literature. Future review of this kind should also include articles published in other languages. The review provides a useful guide for researchers who are interested in future research on tourism and hotel demand modeling and forecasting.
Practical implications
This review provides important suggestions and recommendations for improving the efficiency of tourism and hospitality management practices.
Originality/value
The value of this review is that it identifies the current trends in tourism and hotel demand modeling and forecasting research and points out future research directions
Neutron star matter in the quark-meson coupling model in strong magnetic fields
The effects of strong magnetic fields on neutron star matter are investigated
in the quark-meson coupling (QMC) model. The QMC model describes a nuclear
many-body system as nonoverlapping MIT bags in which quarks interact through
self-consistent exchange of scalar and vector mesons in the mean-field
approximation. The results of the QMC model are compared with those obtained in
a relativistic mean-field (RMF) model. It is found that quantitative
differences exist between the QMC and RMF models, while qualitative trends of
the magnetic field effects on the equation of state and composition of neutron
star matter are very similar.Comment: 16 pages, 4 figure
- âŠ