48,538 research outputs found

    Image interpolation using Shearlet based iterative refinement

    Get PDF
    This paper proposes an image interpolation algorithm exploiting sparse representation for natural images. It involves three main steps: (a) obtaining an initial estimate of the high resolution image using linear methods like FIR filtering, (b) promoting sparsity in a selected dictionary through iterative thresholding, and (c) extracting high frequency information from the approximation to refine the initial estimate. For the sparse modeling, a shearlet dictionary is chosen to yield a multiscale directional representation. The proposed algorithm is compared to several state-of-the-art methods to assess its objective as well as subjective performance. Compared to the cubic spline interpolation method, an average PSNR gain of around 0.8 dB is observed over a dataset of 200 images

    A formal definition and a new security mechanism of physical unclonable functions

    Full text link
    The characteristic novelty of what is generally meant by a "physical unclonable function" (PUF) is precisely defined, in order to supply a firm basis for security evaluations and the proposal of new security mechanisms. A PUF is defined as a hardware device which implements a physical function with an output value that changes with its argument. A PUF can be clonable, but a secure PUF must be unclonable. This proposed meaning of a PUF is cleanly delineated from the closely related concepts of "conventional unclonable function", "physically obfuscated key", "random-number generator", "controlled PUF" and "strong PUF". The structure of a systematic security evaluation of a PUF enabled by the proposed formal definition is outlined. Practically all current and novel physical (but not conventional) unclonable physical functions are PUFs by our definition. Thereby the proposed definition captures the existing intuition about what is a PUF and remains flexible enough to encompass further research. In a second part we quantitatively characterize two classes of PUF security mechanisms, the standard one, based on a minimum secret read-out time, and a novel one, based on challenge-dependent erasure of stored information. The new mechanism is shown to allow in principle the construction of a "quantum-PUF", that is absolutely secure while not requiring the storage of an exponentially large secret. The construction of a PUF that is mathematically and physically unclonable in principle does not contradict the laws of physics.Comment: 13 pages, 1 figure, Conference Proceedings MMB & DFT 2012, Kaiserslautern, German

    Reversibility of Red blood Cell deformation

    Full text link
    The ability of cells to undergo reversible shape changes is often crucial to their survival. For Red Blood Cells (RBCs), irreversible alteration of the cell shape and flexibility often causes anemia. Here we show theoretically that RBCs may react irreversibly to mechanical perturbations because of tensile stress in their cytoskeleton. The transient polymerization of protein fibers inside the cell seen in sickle cell anemia or a transient external force can trigger the formation of a cytoskeleton-free membrane protrusion of micrometer dimensions. The complex relaxation kinetics of the cell shape is shown to be responsible for selecting the final state once the perturbation is removed, thereby controlling the reversibility of the deformation. In some case, tubular protrusion are expected to relax via a peculiar "pearling instability".Comment: 4 pages, 3 figure

    Enhancement of plasticity in Ti-based metallic glass matrix composites by controlling characteristic and volume fraction of primary phase

    Get PDF
    In this study, Ti-based metallic glass matrix composites with high plasticity have been developed by controlling characteristic and volume fraction of primary phase embedded in the glass matrix. By careful alloy design procedure, the compositions of ß/glass phases, which are in metastable equilibrium have been properly selected, therefore the mechanical properties can be tailored by selecting the alloy compositions between the composition of ß and glass phases. The relation between the compressive yield strength and volume fraction of ß phase is well described using the rule of mixtures

    Optical studies of carrier and phonon dynamics in Ga_{1-x}Mn_{x}As

    Full text link
    We present a time-resolved optical study of the dynamics of carriers and phonons in Ga_{1-x}Mn_{x}As layers for a series of Mn and hole concentrations. While band filling is the dominant effect in transient optical absorption in low-temperature-grown (LT) GaAs, band gap renormalization effects become important with increasing Mn concentration in Ga_{1-x}Mn_{x}As, as inferred from the sign of the absorption change. We also report direct observation on lattice vibrations in Ga1-xMnxAs layers via reflective electro-optic sampling technique. The data show increasingly fast dephasing of LO phonon oscillations for samples with increasing Mn and hole concentration, which can be understood in term of phonon scattering by the holes.Comment: 13 pages, 3 figures replaced Fig.1 after finding a mistake in previous versio

    Repeat-Until-Success quantum computing using stationary and flying qubits

    Full text link
    We introduce an architecture for robust and scalable quantum computation using both stationary qubits (e.g. single photon sources made out of trapped atoms, molecules, ions, quantum dots, or defect centers in solids) and flying qubits (e.g. photons). Our scheme solves some of the most pressing problems in existing non-hybrid proposals, which include the difficulty of scaling conventional stationary qubit approaches, and the lack of practical means for storing single photons in linear optics setups. We combine elements of two previous proposals for distributed quantum computing, namely the efficient photon-loss tolerant build up of cluster states by Barrett and Kok [Phys. Rev. A 71, 060310(R) (2005)] with the idea of Repeat-Until-Success (RUS) quantum computing by Lim et al. [Phys. Rev. Lett. 95, 030505 (2005)]. This idea can be used to perform eventually deterministic two-qubit logic gates on spatially separated stationary qubits via photon pair measurements. Under non-ideal conditions, where photon loss is a possibility, the resulting gates can still be used to build graph states for one-way quantum computing. In this paper, we describe the RUS method, present possible experimental realizations, and analyse the generation of graph states.Comment: 14 pages, 7 figures, minor changes, references and a discussion on the effect of photon dark counts adde

    Relativistic linear stability equations for the nonlinear Dirac equation in Bose-Einstein condensates

    Full text link
    We present relativistic linear stability equations (RLSE) for quasi-relativistic cold atoms in a honeycomb optical lattice. These equations are derived from first principles and provide a method for computing stabilities of arbitrary localized solutions of the nonlinear Dirac equation (NLDE), a relativistic generalization of the nonlinear Schr\"odinger equation. We present a variety of such localized solutions: skyrmions, solitons, vortices, and half-quantum vortices, and study their stabilities via the RLSE. When applied to a uniform background, our calculations reveal an experimentally observable effect in the form of Cherenkov radiation. Remarkably, the Berry phase from the bipartite structure of the honeycomb lattice induces a boson-fermion transmutation in the quasi-particle operator statistics.Comment: 6 pages, 3 figure

    Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures

    Full text link
    We report on resonant tunneling magnetoresistance via localized states through a ZnSe semiconducting barrier which can reverse the sign of the effective spin polarization of tunneling electrons. Experiments performed on Fe/ZnSe/Fe planar junctions have shown that positive, negative or even its sign-reversible magnetoresistance can be obtained, depending on the bias voltage, the energy of localized states in the ZnSe barrier and spatial symmetry. The averaging of conduction over all localized states in a junction under resonant condition is strongly detrimental to the magnetoresistance

    Electron Temperature of Ultracold Plasmas

    Full text link
    We study the evolution of ultracold plasmas by measuring the electron temperature. Shortly after plasma formation, competition between heating and cooling mechanisms drives the electron temperature to a value within a narrow range regardless of the initial energy imparted to the electrons. In agreement with theory predictions, plasmas exhibit values of the Coulomb coupling parameter Γ\Gamma less than 1.Comment: 4 pages, plus four figure
    corecore