4,484 research outputs found

    Studies of lower ionosphere drifts by the three-receiver technique

    Get PDF
    Determination of lower ionospheric drifts by three receiver techniqu

    Geometric inequalities from phase space translations

    Get PDF
    We establish a quantum version of the classical isoperimetric inequality relating the Fisher information and the entropy power of a quantum state. The key tool is a Fisher information inequality for a state which results from a certain convolution operation: the latter maps a classical probability distribution on phase space and a quantum state to a quantum state. We show that this inequality also gives rise to several related inequalities whose counterparts are well-known in the classical setting: in particular, it implies an entropy power inequality for the mentioned convolution operation as well as the isoperimetric inequality, and establishes concavity of the entropy power along trajectories of the quantum heat diffusion semigroup. As an application, we derive a Log-Sobolev inequality for the quantum Ornstein-Uhlenbeck semigroup, and argue that it implies fast convergence towards the fixed point for a large class of initial states.Comment: 37 pages; updated to match published versio

    Structured optical receivers to attain superadditive capacity and the Holevo limit

    Full text link
    When classical information is sent over a quantum channel, attaining the ultimate limit to channel capacity requires the receiver to make joint measurements over long codeword blocks. For a pure-state channel, we construct a receiver that can attain the ultimate capacity by applying a single-shot unitary transformation on the received quantum codeword followed by simultaneous (but separable) projective measurements on the single-modulation-symbol state spaces. We study the ultimate limits of photon-information-efficient communications on a lossy bosonic channel. Based on our general results for the pure-state quantum channel, we show some of the first concrete examples of codes and structured joint-detection optical receivers that can achieve fundamentally higher (superadditive) channel capacity than conventional receivers that detect each modulation symbol individually.Comment: 4 pages, 4 figure

    Solving Robust MDPs through No-Regret Dynamics

    Full text link
    Reinforcement Learning is a powerful framework for training agents to navigate different situations, but it is susceptible to changes in environmental dynamics. However, solving Markov Decision Processes that are robust to changes is difficult due to nonconvexity and size of action or state spaces. While most works have analyzed this problem by taking different assumptions on the problem, a general and efficient theoretical analysis is still missing. However, we generate a simple framework for improving robustness by solving a minimax iterative optimization problem where a policy player and an environmental dynamics player are playing against each other. Leveraging recent results in online nonconvex learning and techniques from improving policy gradient methods, we yield an algorithm that maximizes the robustness of the Value Function on the order of O(1T12)\mathcal{O}\left(\frac{1}{T^{\frac{1}{2}}}\right) where TT is the number of iterations of the algorithm

    Progress in Element Analysis on a High-Voltage Electron Microscope

    Get PDF
    X-Ray microprobe (XMA) and electron energy-loss (EELS) spectrometers have been installed on the high-voltage electron microscope (HVEM). The probe size has been measured and background reduction is in progress for XMA and EELS as are improvements in electron optics for EELS and sensitivity measurements. XMA is currently useful for qualitative analysis and has been used by several investigators from our laboratory and outside laboratories. However, EELS background levels are still too high for meaningful results to be obtained. Standards suitable for biological specimens are being measured, and a library for quantitative analysis is being compiled

    Pressure effects on charge, spin, and metal-insulator transitions in narrow bandwidth manganite Pr1−x_{1-x}Cax_{x}MnO3_{3}

    Full text link
    Pressure effects on the charge and spin states and the relation between the ferromagnetic and metallic states were explored on the small bandwidth manganite Pr1−x_{1-x}Cax_{x}MnO3_{3} (x = 0.25, 0.3, 0.35). Under pressure, the charge ordering state is suppressed and a ferromagnetic metallic state is induced in all three samples. The metal-insulator transition temperature (TMI_{MI}) increases with pressure below a critical point P*, above which TMI_{MI} decreases and the material becomes insulating as at the ambient pressure. The eg_{g} electron bandwidth and/or band-filling mediate the pressure effects on the metal-insulator transition and the magnetic transition. In the small bandwidth and low doping concentration compound (x = 0.25), the TMI_{MI} and Curie temperature (TC_{C}) change with pressure in a reverse way and do not couple under pressure. In the x = 0.3 compound, the relation of TMI_{MI} and TC_{C} shows a critical behavior: They are coupled in the range of ∼\sim0.8-5 GPa and decoupled outside of this range. In the x = 0.35 compound, TMI_{MI} and TC_{C} are coupled in the measured pressure range where a ferromagnetic state is present

    Application of Hertz Vector Diffraction Theory to the Diffraction of Focused Gaussian Beams and Calculations of Focal Parameters

    Get PDF
    Hertz vector diffraction theory is applied to a focused TEM00 Gaussian light field passing through a circular aperture. The resulting theoretical vector field model reproduces plane-wave diffractive behavior for severely clipped beams, expected Gaussian beam behavior for unperturbed focused Gaussian beams as well as unique diffracted-Gaussian behavior between the two regimes. The maximum intensity obtainable and the width of the beam in the focal plane are investigated as a function of the clipping ratio between the aperture radius and the beam width in the aperture plane
    • …
    corecore