58 research outputs found

    News and views: Response to 'Non-metric dental traits and hominin phylogeny' by Carter et al., with additional information on the Arizona State University Dental Anthropology System and phylogenetic 'place' of Australopithecus sediba

    Get PDF
    Here we respond to Carter and colleagues’ (2013) remarks concerning our Science article (Irish et al., 2013). The goals for that article were to: 1) further characterize Australopithecus sediba by describing 22 Arizona State University Dental Anthropology System (ASUDAS) traits, 2) compare the traits in A. sediba with those previously recorded in other hominin samples, and 3) present initial phylogenetic analyses using these data. Given the subset of traits, out of 125 possible (below), and small A. sediba sample, our conclusion was that the results “further define [the species’] position relative to other genera,” but that “the phylogenetic place of A. sediba has not been settled” (Irish et al., 2013: 1233062–12330624). These goals were met, as a basis for more comprehensive study. Below we summarize and reply to the eight objections of Carter et al. (2013), while: 1) demonstrating that there is a strong theoretical basis for using the ASUDAS in phylogenetic analyses, 2) presenting results (which corroborate previous cladistic analyses) that are congruent using different methodological approaches, and 3) introducing new results using a second outgroup, Pan troglodytes, that fully uphold our original analysis

    Ancient teeth, phenetic affinities, and African hominins: Another look at where Homo naledi fits in.

    Get PDF
    A new species of Homo, Homo naledi, was described in 2015 based on the hominin skeletal remains from the Dinaledi Chamber of the Rising Star cave system, South Africa. Subsequent craniodental comparative analyses, both phenetic and cladistic, served to support its taxonomic distinctiveness. Here we provide a new quantitative analysis, where up to 78 nonmetric crown and root traits of the permanent dentition were compared among samples of H. naledi (including remains from the recently discovered Lesedi Chamber) and eight other species from Africa: Australopithecus afarensis, Australopithecus africanus, Paranthropus boisei, Paranthropus robustus, Homo habilis, Homo erectus, Middle Pleistocene Homo sp., and Pleistocene and Holocene Homo sapiens. By using the mean measure of divergence distance statistic, phenetic affinities were calculated among samples to evaluate interspecific relatedness. The objective was to compare the results with those previously obtained, to assess further the taxonomic validity of the Rising Star hominin species. In accordance with earlier findings, H. naledi appears most similar dentally to the other African Homo samples. However, the former species is characterized by its retention and full expression of features relating to the main cusps, as well as the root numbers, with a near absence of accessory traits-including many that, based on various cladistic studies, are plesiomorphic in both extinct and extant African hominins. As such, the present findings provide additional support for the taxonomic validity of H. naledi as a distinct species of Homo

    Virtual histological assessment of the prenatal life history and age at death of the Upper Paleolithic fetus from Ostuni (Italy)

    Get PDF
    The fetal remains from the Ostuni 1 burial (Italy, ca 27 ka) represent a unique opportunity to explore the prenatal biological parameters, and to reconstruct the possible patho-biography, of a fetus (and its mother) in an Upper Paleolithic context. Phase-contrast synchrotron X-ray microtomography imaging of two deciduous tooth crowns and microfocus CT measurements of the right hemimandible of the Ostuni 1b fetus were performed at the SYRMEP beamline and at the TomoLab station of the Elettra - Sincrotrone laboratory (Trieste, Italy) in order to refne age at death and to report the enamel developmental history and dental tissue volumes for this fetal individual. The virtual histology allowed to estimate the age at death of the fetus at 31–33 gestational weeks. Three severe physiological stress episodes were also identifed in the prenatal enamel. These stress episodes occurred during the last two months and half of pregnancy and may relate to the death of both individuals. Compared with modern prenatal standards, Os1b’s skeletal development was advanced. This cautions against the use of modern skeletal and dental references for archaeological fnds and emphasizes the need for more studies on prenatal archaeological skeletal samples

    First Early Hominin from Central Africa (Ishango, Democratic Republic of Congo)

    Get PDF
    Despite uncontested evidence for fossils belonging to the early hominin genus Australopithecus in East Africa from at least 4.2 million years ago (Ma), and from Chad by 3.5 Ma, thus far there has been no convincing evidence of Australopithecus, Paranthropus or early Homo from the western (Albertine) branch of the Rift Valley. Here we report the discovery of an isolated upper molar (#Ish25) from the Western Rift Valley site of Ishango in Central Africa in a derived context, overlying beds dated to between ca. 2.6 to 2.0 Ma. We used ÂľCT imaging to compare its external and internal macro-morphology to upper molars of australopiths, and fossil and recent Homo. We show that the size and shape of the enamel-dentine junction (EDJ) surface discriminate between Plio-Pleistocene and post-Lower Pleistocene hominins, and that the Ishango molar clusters with australopiths and early Homo from East and southern Africa. A reassessment of the archaeological context of the specimen is consistent with the morphological evidence and suggest that early hominins were occupying this region by at least 2 Ma

    Safe casting and reliable cusp reconstruction assisted by micro-computed tomographic scans of fossil teeth

    No full text
    Dental replicas are frequently utilized in paleoanthropological studies of perikymata and enamel hypoplasia. However, fossil teeth are often fragile and worn, causing two problems: (1) the risk of damage by removing enamel fragments when impression-making material is separated from the fossil tooth surface, and (2) the need to reconstruct worn portions of the crown to assess perikymata number, distribution, and hypoplasia timing. This study presents the advantages of ÎźCT data of canines and lateral incisors for (1) detecting cracks along the enamel-dentine junction (EDJ) which could cause damage when casting, and (2) reliably and non-destructively reconstructing worn or broken cusps. Fragile teeth of Homo naledi, Miocene, and Pleistocene specimens were ÎźCT-scanned: 2D virtual sections and 3D models allowed for inspecting crack pattern beyond the external surface and 2D virtual sections were used to digitally reconstruct cusp tips (only Homo naledi). Micro-CT scans allowed cracks running along the EDJ and communicating with radial cracks in the enamel to be identified prior to casting. Cusp reconstructions using ÎźCT data were conducted as precisely as when using thin-sections or photographs, and with high intra- and inter-observer agreement, while preserving the original specimen and affording numerous planes of virtual section. When available, ÎźCT data should be inspected prior to tooth casting to exclude teeth that show a pattern of cracks that could lead to damage. Virtual sections allow for accessible, reliable, and non-destructive cusp reconstructions that may be used for developmental (e.g., perikymata and enamel hypoplasia) or enamel thickness studie
    • …
    corecore