609 research outputs found

    Experimental detection of quantum coherent evolution through the violation of Leggett-Garg-type inequalities

    Full text link
    We discuss the use of inequalities of the Leggett-Garg type (LGtI) to witness quantum coherence and present the first experimental violation of this type of inequalities using a light-matter interfaced system. By separately benchmarking the Markovian character of the evolution and the translational invariance of the conditional probabilities, the observed violation of a LGtI is attributed to the quantum coherent character of the process. These results provide a general method to benchmark `quantumness' when the absence of memory effects can be independently certified and confirm the persistence of quantum coherent features within systems of increasing complexity.Comment: published version, including supplementary materia

    Revisiting Bohr's principle of complementarity using a quantum device

    Full text link
    Bohr's principle of complementarity lies at the central place of quantum mechanics, according to which the light is chosen to behave as a wave or particles, depending on some exclusive detecting devices. Later, intermediate cases are found, but the total information of the wave-like and particle-like behaviors are limited by some inequalities. One of them is Englert-Greenberger (EG) duality relation. This relation has been demonstrated by many experiments with the classical detecting devices. Here by introducing a quantum detecting device into the experiment, we find the limit of the duality relation is exceeded due to the interference between the photon's wave and particle properties. However, our further results show that this experiment still obey a generalized EG duality relation. The introducing of the quantum device causes the new phenomenon, provides an generalization of the complementarity principle, and opens new insights into our understanding of quantum mechanics.Comment: 5 pages, 4 figure

    Limitations of practical multi-photon decoherence-free states

    Full text link
    It is shown in this paper that decoherence-free subspace (DFS) of practical multi-photon polarization can not avoid the exponential decoherence even in the same extra-environment if the photons are frequency-anticorrelated. The reason lies in that the condition of collective decoherence is not satisfied in this case. As an example, the evolution of biphoton's decoherence-free state is given. Possible solution for feasible multi-photon's DFS state is also given.Comment: 6 pages, no figur

    Probabilistic teleportation and entanglement matching

    Get PDF
    Teleportation may be taken as sending and extracting quantum information through quantum channels. In this report, it is shown that to get the maximal probability of exact teleportation through partially entangled quantum channels, the sender (Alice) need only to operate a measurement which satisfy an ``entanglement matching'' to this channel. An optimal strategy is also provided for the receiver (Bob) to extract the quantum information by adopting general evolutions.Comment: 3.5 pages, No figure

    Measurement Induced Quantum Coherence Recovery

    Full text link
    We show that measurement can recover the quantum coherence of a qubit in a non-Markovian environment. The experimental demonstration in an optical system is provided by comparing the visibilities (and fidelities) of the final states with and without measurement. This method can be extended to other two-level quantum systems and entangled states in a non-Markovian evolution environment. It may also be used to implement other quantum information processing.Comment: 9 pages, 5 figure

    Optical realization of universal quantum cloning

    Full text link
    Beyond the no-cloning theorem, the universal symmetric quantum cloning machine was first addressed by Buzek and Hillery. Here, we realized the one-to-two qubits Buzek-Hillery cloning machine with linear optical devices. This method relies on the representation of several qubits by a single photon. We showed that, the fidelities between the two output qubits and the original qubit are both 5/6 (which proved to be the optimal fidelity of one-to-two qubits universal cloner) for arbitrary input pure states.Comment: 5 Pages, 2 Figure

    Efficient quantum key distribution scheme with nonmaximally entangled states

    Get PDF
    We propose an efficient quantum key distribution scheme based on entanglement. The sender chooses pairs of photons in one of the two equivalent nonmaximally entangled states randomly, and sends a sequence of photons from each pair to the receiver. They choose from the various bases independently but with substantially different probabilities, thus reducing the fraction of discarded data, and a significant gain in efficiency is achieved. We then show that such a refined data analysis guarantees the security of our scheme against a biased eavesdropping strategy.Comment: 5 Pages, No Figur

    Experimental preparation of Werner state via spontaneous parametric down-conversion

    Full text link
    We present an experiment of preparing Werner state via spontaneous parametric down-conversion and controlled decoherence of photons in this paper. In this experiment two independent BBO (beta-barium borate) crystals are used to produce down-conversion light beams, which are mixed to prepare Werner state.Comment: 6 pages, 4 figures and 2 table

    Simple scheme for expanding a polarization-entangled W state by adding one photon

    Full text link
    We propose a simple scheme for expanding a polarization-entangled W state. By mixing a single photon and one of the photons in an n-photon W state at a polarization-dependent beam splitter (PDBS), we can obtain an (n+1)-photon W state after post-selection. Our scheme also opens the door for generating n-photon W states using single photons and linear optics.Comment: 3 pages, 2 figure
    corecore