36 research outputs found

    Asymptomatic papillary fibroelastoma of the Aortic valve in a young woman - a case report

    Get PDF
    Echocardiography represents an invaluable diagnostic tool for the detection of intracardiac masses while simultaneously provides information about their size, location, mobility and attachment site as well as the presence and extent of any consequent hemodynamic derangement

    Simultaneous Effects of Light Intensity and Phosphorus Supply on the Sterol Content of Phytoplankton

    Get PDF
    Sterol profiles of microalgae and their change with environmental conditions are of great interest in ecological food web research and taxonomic studies alike. Here, we investigated effects of light intensity and phosphorus supply on the sterol content of phytoplankton and assessed potential interactive effects of these important environmental factors on the sterol composition of algae. We identified sterol contents of four common phytoplankton genera, Scenedesmus, Chlamydomonas, Cryptomonas and Cyclotella, and analysed the change in sterol content with varying light intensities in both a high-phosphorus and a low-phosphorus approach. Sterol contents increased significantly with increasing light in three out of four species. Phosphorus-limitation reversed the change of sterol content with light intensity, i.e., sterol content decreased with increasing light at low phosphorus supply. Generally sterol contents were lower in low-phosphorus cultures. In conclusion, both light and phosphorus conditions strongly affect the sterol composition of algae and hence should be considered in ecological and taxonomic studies investigating the biochemical composition of algae. Data suggest a possible sterol limitation of growth and reproduction of herbivorous crustacean zooplankton during summer when high light intensities and low phosphorus supply decrease sterol contents of algae

    Phylogenetic Distribution of Fungal Sterols

    Get PDF
    BACKGROUND: Ergosterol has been considered the "fungal sterol" for almost 125 years; however, additional sterol data superimposed on a recent molecular phylogeny of kingdom Fungi reveals a different and more complex situation. METHODOLOGY/PRINCIPAL FINDINGS: The interpretation of sterol distribution data in a modern phylogenetic context indicates that there is a clear trend from cholesterol and other Delta(5) sterols in the earliest diverging fungal species to ergosterol in later diverging fungi. There are, however, deviations from this pattern in certain clades. Sterols of the diverse zoosporic and zygosporic forms exhibit structural diversity with cholesterol and 24-ethyl -Delta(5) sterols in zoosporic taxa, and 24-methyl sterols in zygosporic fungi. For example, each of the three monophyletic lineages of zygosporic fungi has distinctive major sterols, ergosterol in Mucorales, 22-dihydroergosterol in Dimargaritales, Harpellales, and Kickxellales (DHK clade), and 24-methyl cholesterol in Entomophthorales. Other departures from ergosterol as the dominant sterol include: 24-ethyl cholesterol in Glomeromycota, 24-ethyl cholest-7-enol and 24-ethyl-cholesta-7,24(28)-dienol in rust fungi, brassicasterol in Taphrinales and hypogeous pezizalean species, and cholesterol in Pneumocystis. CONCLUSIONS/SIGNIFICANCE: Five dominant end products of sterol biosynthesis (cholesterol, ergosterol, 24-methyl cholesterol, 24-ethyl cholesterol, brassicasterol), and intermediates in the formation of 24-ethyl cholesterol, are major sterols in 175 species of Fungi. Although most fungi in the most speciose clades have ergosterol as a major sterol, sterols are more varied than currently understood, and their distribution supports certain clades of Fungi in current fungal phylogenies. In addition to the intellectual importance of understanding evolution of sterol synthesis in fungi, there is practical importance because certain antifungal drugs (e.g., azoles) target reactions in the synthesis of ergosterol. These findings also invalidate use of ergosterol as an indicator of biomass of certain fungal taxa (e.g., Glomeromycota). Data from this study are available from the Assembling the Fungal Tree of Life (AFTOL) Structural and Biochemical Database: http://aftol.umn.edu

    Efficacy of TachoSil® as a sutureless hemostatic patch to repair a perforation of the interventricular groove during endocardial radiofrequency ablation

    No full text
    Catheter ablation is a well-established therapeutic option for management of recurrent ventricular tachycardia in patients with ischemic/non-ischemic heart disease and procedural complications include a mortality rate of up to 3% and a risk of major complications up to 10%. Cardiac perforation following a catheter ablation is rare but serious complication and occurs in 1% of ventricular ablation procedures. The appropriate surgical repair may be challenging and need cardiopulmonary bypass support according to the location of the lesion and the hemodynamic status of the patient. We report the case of a free wall right ventricular perforation of the interventricular groove with cardiac tamponade following catheter ablation for recurrent ventricular tachycardia. Due to the proximity of the left anterior descending artery and the extreme fragility of tissues, the patient was treated successfully by a sutureless patch technique using a fibrin tissue-adhesive collagen fleece (TachoSil®). This technique is a safe and effective surgical option to repair a ventricular perforation especially when the ventricular tissues are fragile. It is simple and enable to realize surgical repair also if the localization of tear is difficult to access and without the need for cardiopulmonary bypass support if hemodynamic conditions are stable
    corecore