684 research outputs found
Extraction of the Spin Glass Correlation Length
The peak of the spin glass relaxation rate, S(t)=d{-M_{TRM}(t,t_w)}/H/{d ln
t}, is directly related to the typical value of the free energy barrier which
can be explored over experimental time scales. A change in magnetic field H
generates an energy E_z={N_s}{X_fc}{H^2} by which the barrier heights are
reduced, where X_{fc} is the field cooled susceptibility per spin, and N_s is
the number of correlated spins. The shift of the peak of S(t) gives E_z,
generating the correlation length, Ksi(t,T), for Cu:Mn 6at.% and
CdCr_{1.7}In_{0.3}S_4. Fits to power law dynamics, Ksi(t,T)\propto
{t}^{\alpha(T)} and activated dynamics Ksi(t,T) \propto {ln t}^{1/psi} compare
well with simulation fits, but possess too small a prefactor for activated
dynamics.Comment: 4 pages, 4 figures. Department of Physics, University of California,
Riverside, California, and Service de Physique de l'Etat Condense, CEA
Saclay, Gif sur Yvette, France. To appear in Phys. Rev. Lett. January 4, 199
Relaxation of the field-cooled magnetization of an Ising spin glass
The time and temperature dependence of the field-cooled magnetization of a
three dimensional Ising spin glass, Fe_{0.5}Mn_{0.5}TiO_{3}, has been
investigated. The temperature and cooling rate dependence is found to exhibit
memory phenomena that can be related to the memory behavior of the low
frequency ac-susceptibility. The results add some further understanding on how
to model the three dimensional Ising spin glass in real space.Comment: 8 pages RevTEX, 5 figure
Memory Effect, Rejuvenation and Chaos Effect in the Multi-layer Random Energy Model
We introduce magnetization to the Multi-layer Random Energy Model which has a
hierarchical structure, and perform Monte Carlo simulation to observe the
behavior of ac-susceptibility. We find that this model is able to reproduce
three prominent features of spin glasses, i.e., memory effect, rejuvenation and
chaos effect, which were found recently by various experiments on aging
phenomena with temperature variations.Comment: 10 pages, 14 figures, to be submitted to J. Phys. Soc. Jp
Scaling Law and Aging Phenomena in the Random Energy Model
We study the effect of temperature shift on aging phenomena in the Random
Energy Model (REM). From calculation on the correlation function and simulation
on the Zero-Field-Cooled magnetization, we find that the REM satisfies a
scaling relation even if temperature is shifted. Furthermore, this scaling
property naturally leads to results obtained in experiment and the droplet
theory.Comment: 8 pages, 7 figures, to be submitted to J. Phys. Soc. Jp
Numerical Study of Aging in the Generalized Random Energy Model
Magnetizations are introduced to the Generalized Random Energy Model (GREM)
and numerical simulations on ac susceptibility is made for direct comparison
with experiments in glassy materials. Prominent dynamical natures of spin
glasses, {\it i.e.}, {\em memory} effect and {\em reinitialization}, are
reproduced well in the GREM. The existence of many layers causing continuous
transitions is very important for the two natures. Results of experiments in
other glassy materials such as polymers, supercooled glycerol and orientational
glasses, which are contrast to those in spin glasses, are interpreted well by
the Single-layer Random Energy Model.Comment: 8 pages, 9 figures, to be submitted to J. Phys. Soc. Jp
Spin glass overlap barriers in three and four dimensions
For the Edwards-Anderson Ising spin-glass model in three and four dimensions
(3d and 4d) we have performed high statistics Monte Carlo calculations of those
free-energy barriers which are visible in the probability density
of the Parisi overlap parameter . The calculations rely on the
recently introduced multi-overlap algorithm. In both dimensions, within the
limits of lattice sizes investigated, these barriers are found to be
non-self-averaging and the same is true for the autocorrelation times of our
algorithm. Further, we present evidence that barriers hidden in dominate
the canonical autocorrelation times.Comment: 20 pages, Latex, 12 Postscript figures, revised version to appear in
Phys. Rev.
Short range ferromagnetism and spin glass state in
Dynamic magnetic properties of are
reported. The system appears to attain local ferromagnetic order at
K. Below this temperature the low field
magnetization becomes history dependent, i.e. the zero field cooled (ZFC) and
field cooled (FC) magnetization deviate from each other and closely logarithmic
relaxation appears at our experimental time scales (0.3- sec). The zero
field cooled magnetization has a maximum at K,
whereas the field cooled magnetization continues to increase, although less
sharply, also below this temperature. Surprisingly, the dynamics of the system
shows non-equilibrium spin glass (SG) features not only below the maximum in
the ZFC magnetization, but also in the temperature region between this maximum
and . The aging and temperature cycling experiments show only
quantitative differences in the dynamic behavior above and below the maximum in
the ZFC-magnetization; similarly, memory effects are observed in both
temperature regions. We attribute the high temperature behavior to the
existence of clusters of short range ferromagnetic order below
; the configuration evolves into a conventional spin glass
state at temperatures below .Comment: REVTeX style; 8 pages, 8 figure
Strong rejuvenation in a chiral-glass superconductor
The glassy paramagnetic Meissner phase of a BiSrCaCuO
superconductor ( = 8.18) is investigated by squid magnetometry, using
``dc-memory'' experiments employed earlier to study spin glasses. The
temperature dependence of the zero-field-cooled and thermo-remanent
magnetization is recorded on re-heating after specific cooling protocols, in
which single or multiple halts are performed at constant temperatures. The
'spin' states equilibrated during the halts are retrieved on re-heating. The
observed memory and rejuvenation effects are similar to those observed in
Heisenberg-like spin glasses.Comment: REVTeX 4 style; 5 pages, 5 figure
Factors associated with development of excessive fatness in children and adolescents: a review of prospective studies
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99011/1/obr12035.pd
- …
