94 research outputs found

    Validation of the Organizational Culture Assessment Instrument

    Get PDF
    Organizational culture is a commonly studied area in industrial/organizational psychology due to its important role in workplace behaviour, cognitions, and outcomes. Jung et al.'s [1] review of the psychometric properties of organizational culture measurement instruments noted many instruments have limited validation data despite frequent use in both theoretical and applied situations. The Organizational Culture Assessment Instrument (OCAI) has had conflicting data regarding its psychometric properties, particularly regarding its factor structure. Our study examined the factor structure and criterion validity of the OCAI using robust analysis methods on data gathered from 328 (females = 226, males = 102) Australian employees. Confirmatory factor analysis supported a four factor structure of the OCAI for both ideal and current organizational culture perspectives. Current organizational culture data demonstrated expected reciprocally-opposed relationships between three of the four OCAI factors and the outcome variable of job satisfaction but ideal culture data did not, thus indicating possible weak criterion validity when the OCAI is used to assess ideal culture. Based on the mixed evidence regarding the measure's properties, further examination of the factor structure and broad validity of the measure is encouraged

    What do young adolescents think about taking part in longitudinal self-harm research?: findings from a school-based study

    Get PDF
    Background: Research about self-harm in adolescence is important given the high incidence in youth, and strong links to suicide and other poor outcomes. Clarifying the impact of involvement in school based self-harm studies on young adolescents is an ethical priority given heightened risk at this developmental stage. Methods: Here, 594 school-based students aged mainly 13-14 years completed a survey on self-harm at baseline and again 12-weeks later. Change in mood following completion of each survey, ratings and thoughts about participation, and responses to a mood-mitigation activity were analysed using a multi-method approach. Results: Baseline participation had no overall impact on mood. However, boys and girls reacted differently to the survey depending on self-harm status. Having a history of self-harm had a negative impact on mood for girls, but a positive impact on mood for boys. In addition, participants rated the survey in mainly positive/neutral terms, and cited benefits including personal insight and altruism. At follow-up, there was a negative impact on mood following participation, but no significant effect of gender or self-harm status. Ratings at follow-up were mainly positive/neutral. Those who had self-harmed reported more positive and fewer negative ratings than at baseline: the opposite pattern of response was found for those who had not self-harmed. Mood mitigation activities were endorsed. Conclusions: Self-harm research with youth is feasible in school settings. Most young people are happy to take part and cite important benefits. However, the impact of participation in research appears to vary according to gender, self-harm risk and method/time of assessment. The impact of repeated assessment requires clarification. Simple mood-elevation techniques may usefully help to mitigate distress

    Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: Marked differences between various antipsychotic drugs

    Get PDF
    BACKGROUND: The etiology of schizophrenia is unknown, but neurodevelopmental disturbances, myelin- and oligodendrocyte abnormalities and synaptic dysfunction have been suggested as pathophysiological factors in this severe psychiatric disorder. Cholesterol is an essential component of myelin and has proved important for synapse formation. Recently, we demonstrated that the antipsychotic drugs clozapine and haloperidol stimulate lipogenic gene expression in cultured glioma cells through activation of the sterol regulatory element-binding protein (SREBP) transcription factors. We here compare the action of chlorpromazine, haloperidol, clozapine, olanzapine, risperidone and ziprasidone on SREBP activation and SREBP-controlled gene expression (ACAT2, HMGCR, HMGCS1, FDPS, SC5DL, DHCR7, LDLR, FASN and SCD1) in four CNS-relevant human cell lines. RESULTS: There were marked differences in the ability of the antipsychotic drugs to activate the expression of SREBP target genes, with clozapine and chlorpromazine as the most potent stimulators in a context of therapeutically relevant concentrations. Glial-like cells (GaMg glioma and CCF-STTG1 astrocytoma cell lines) displayed more pronounced drug-induced SREBP activation compared to the response in HCN2 human cortical neurons and SH-SY5Y neuroblastoma cells, indicating that antipsychotic-induced activation of lipogenesis is most prominent in glial cells. CONCLUSION: Our present data show a marked variation in the ability of different antipsychotics to induce SREBP-controlled transcriptional activation of lipogenesis in cultured human CNS-relevant cells. We propose that this effect could be relevant for the therapeutic efficacy of some antipsychotic drugs

    The Adult Human Brain Harbors Multipotent Perivascular Mesenchymal Stem Cells

    Get PDF
    Blood vessels and adjacent cells form perivascular stem cell niches in adult tissues. In this perivascular niche, a stem cell with mesenchymal characteristics was recently identified in some adult somatic tissues. These cells are pericytes that line the microvasculature, express mesenchymal markers and differentiate into mesodermal lineages but might even have the capacity to generate tissue-specific cell types. Here, we isolated, purified and characterized a previously unrecognized progenitor population from two different regions in the adult human brain, the ventricular wall and the neocortex. We show that these cells co-express markers for mesenchymal stem cells and pericytes in vivo and in vitro, but do not express glial, neuronal progenitor, hematopoietic, endothelial or microglial markers in their native state. Furthermore, we demonstrate at a clonal level that these progenitors have true multilineage potential towards both, the mesodermal and neuroectodermal phenotype. They can be epigenetically induced in vitro into adipocytes, chondroblasts and osteoblasts but also into glial cells and immature neurons. This progenitor population exhibits long-term proliferation, karyotype stability and retention of phenotype and multipotency following extensive propagation. Thus, we provide evidence that the vascular niche in the adult human brain harbors a novel progenitor with multilineage capacity that appears to represent mesenchymal stem cells and is different from any previously described human neural stem cell. Future studies will elucidate whether these cells may play a role for disease or may represent a reservoir that can be exploited in efforts to repair the diseased human brain

    Roles of glial cells in synapse development

    Get PDF
    Brain function relies on communication among neurons via highly specialized contacts, the synapses, and synaptic dysfunction lies at the heart of age-, disease-, and injury-induced defects of the nervous system. For these reasons, the formation—and repair—of synaptic connections is a major focus of neuroscience research. In this review, I summarize recent evidence that synapse development is not a cell-autonomous process and that its distinct phases depend on assistance from the so-called glial cells. The results supporting this view concern synapses in the central nervous system as well as neuromuscular junctions and originate from experimental models ranging from cell cultures to living flies, worms, and mice. Peeking at the future, I will highlight recent technical advances that are likely to revolutionize our views on synapse–glia interactions in the developing, adult and diseased brain

    How kids see search: a visual analysis of internet search engines

    Get PDF
    Through previous studies into children’s internet search practice, we have gained insight into the taught strategies, information behaviour, and common errors children experience while searching. This paper analyses the visual structure of commonly-used internet search engines (ISEs) to explore how the interface and interaction design of ISEs may influence the search practices of children. Common features of ISEs are identified and the effects of query construction techniques on the visual presentation of information are reported. We use our observations to provide guidelines for the design and development of ISEs for childre

    Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish

    Get PDF
    The inhibitory extracellular matrix in a spinal lesion site is a major impediment to axonal regeneration in mammals. In contrast, the extracellular matrix in zebrafish allows substantial axon re-growth, leading to recovery of movement. However, little is known about regulation and composition of the growth-promoting extracellular matrix. Here we demonstrate that activity of the Wnt/beta-catenin pathway in fibroblast-like cells in the lesion site is pivotal for axon re-growth and functional recovery. Wnt/beta-catenin signaling induces expression of col12a1a/b and deposition of Collagen XII, which is necessary for axons to actively navigate the non-neural lesion site environment. Overexpression of col12a1a rescues the effects of Wnt/beta-catenin pathway inhibition and is sufficient to accelerate regeneration. We demonstrate that in a vertebrate of high regenerative capacity, Wnt/beta-catenin signaling controls the composition of the lesion site extracellular matrix and we identify Collagen XII as a promoter of axonal regeneration. These findings imply that the Wnt/beta-catenin pathway and Collagen XII may be targets for extracellular matrix manipulations in non-regenerating species
    corecore