248 research outputs found
A Selective Culture System for Generating Terminal Deoxynucleotidyl Transferase-Positive Lymphoid Cells In Vitro. V. Detection of Stage-Specific Pro-B-Cell Stimulating Activity in Medium Conditioned by Mouse Bone Marrow Stromal Cells
The selective in vitro generation of rat, mouse, and human terminal deoxynucleotidyl
transferase-positive (TdT+ lymphoid cells in our long-term xenogeneic bone marrow (BM)
culture system is characterized by physical interaction between the developing lymphocytes
and mouse BM-adherent stromal cells and macrophages. In the present study, experiments
in which micropor)us membrane culture inserts were inoculated with rat BM cells
demonstrated that although the generation of primitive B-lineage lymphoid cells requires
the presence of a mouse BM feeder layer, cognitive recognition events are not necessary.
Similarly, cell-free (and serum-free) medium conditioned with mouse BM (but not thymus
or spleen) adherent cells and stromal-cell lines therefrom supported the proliferation of
early rat lymphoid cells in a dose-dependent manner. Double immunofluorescence for
incorporated bromo-deoxyuridine (BrdU) and early B-lineage markers of rat BM lymphoid
cells maintained in culture inserts or conditioned medium (CM), and studies of their in vitro
and in vivo developmental potentials, indicated that the lymphoproliferative response
resulted from the selective stimulation of lymphoid stem and/or progenitor cells. The most
primitive of these target cells had a HIS24+ HIS50- TdT- cμ- sIg-, pre-pro-B-cell phenotype.
Whereas this subset normally constitutes less than 2% of B-lineage BM cells in vivo,
it comprises more than 25% of total lymphoid cells in vitro. In addition, the number of TdT+
cells, predominantly of the early pro-B-cell phenotype (HIS24+ HIS50- TdT- cμ- sIg-), was
increased approximately tenfold above input levels. Based on these and previous findings,
a schematic model is proposed for the developmental pathway of early B-lineage cells in rat
BM from the level of the committed (possibly common) lymphoid stem cell to that of the
pre-B-cell
Signature for Pain Recovery IN Teens (SPRINT): protocol for a multisite prospective signature study in chronic musculoskeletal pain
INTRODUCTION: Current treatments for chronic musculoskeletal (MSK) pain are suboptimal. Discovery of robust prognostic markers separating patients who recover from patients with persistent pain and disability is critical for developing patient-specific treatment strategies and conceiving novel approaches that benefit all patients. Given that chronic pain is a biopsychosocial process, this study aims to discover and validate a robust prognostic signature that measures across multiple dimensions in the same adolescent patient cohort with a computational analysis pipeline. This will facilitate risk stratification in adolescent patients with chronic MSK pain and more resourceful allocation of patients to costly and potentially burdensome multidisciplinary pain treatment approaches. METHODS AND ANALYSIS: Here we describe a multi-institutional effort to collect, curate and analyse a high dimensional data set including epidemiological, psychometric, quantitative sensory, brain imaging and biological information collected over the course of 12 months. The aim of this effort is to derive a multivariate model with strong prognostic power regarding the clinical course of adolescent MSK pain and function. ETHICS AND DISSEMINATION: The study complies with the National Institutes of Health policy on the use of a single internal review board (sIRB) for multisite research, with Cincinnati Children's Hospital Medical Center Review Board as the reviewing IRB. Stanford's IRB is a relying IRB within the sIRB. As foreign institutions, the University of Toronto and The Hospital for Sick Children (SickKids) are overseen by their respective ethics boards. All participants provide signed informed consent. We are committed to open-access publication, so that patients, clinicians and scientists have access to the study data and the signature(s) derived. After findings are published, we will upload a limited data set for sharing with other investigators on applicable repositories. TRIAL REGISTRATION NUMBER: NCT04285112
Immunity against Neisseria meningitidis Serogroup C in the Dutch Population before and after Introduction of the Meningococcal C Conjugate Vaccine
Contains fulltext :
88187.pdf (publisher's version ) (Open Access)BACKGROUND: In 2002 a Meningococcal serogroup C (MenC) conjugate vaccine, with tetanus toxoid as carrier protein, was introduced in the Netherlands as a single-dose at 14 months of age. A catch-up campaign was performed targeting all individuals aged 14 months to 18 years. We determined the MenC-specific immunity before and after introduction of the MenC conjugate (MenCC) vaccine. METHODS AND FINDINGS: Two cross-sectional population-based serum banks, collected in 1995/1996 (n = 8539) and in 2006/2007 (n = 6386), were used for this study. The main outcome measurements were the levels of MenC polysaccharide(PS)-specific IgG and serum bactericidal antibodies (SBA) after routine immunization, 4-5 years after catch-up immunization or by natural immunity. There was an increasing persistence of PS-specific IgG and SBA with age in the catch-up immunized cohorts 4-5 years after their MenCC immunization (MenC PS-specific IgG, 0.25 microg/ml (95%CI: 0.19-0.31 microg/ml) at age 6 years, gradually increasing to 2.34 microg/ml,(95%CI: 1.70-3.32 microg/ml) at age 21-22 years). A comparable pattern was found for antibodies against the carrier protein in children immunized above 9 years of age. In case of vaccination before the age of 5 years, PS-specific IgG was rapidly lost. For all age-cohorts together, SBA seroprevalence (> or =8) increased from 19.7% to 43.0% in the pre- and post-MenC introduction eras, respectively. In non-immunized adults the SBA seroprevalence was not significantly different between the pre- and post-MenC introduction periods, whereas PS-specific IgG was significantly lower in the post-MenC vaccination (GMT, age > or =25 years, 0.10 microg/ml) era compared to the pre-vaccination (GMT, age > or =25 years, 0.43 microg/ml) era. CONCLUSION: MenCC vaccination administered above 5 years of age induced high IgG levels compared to natural exposure, increasing with age. In children below 14 months of age and non-immunized cohorts lower IgG levels were observed compared to the pre-vaccination era, whereas functional levels remained similar in adults. Whether the lower IgG poses individuals at increased risk for MenC disease should be carefully monitored. Large-scale introduction of a MenCC vaccine has led to improved protection in adolescents, but in infants a single-dose schedule may not provide sufficient protection on the long-term and therefore a booster-dose early in adolescence should be considered
Antagomir-17-5p Abolishes the Growth of Therapy-Resistant Neuroblastoma through p21 and BIM
We identified a key oncogenic pathway underlying neuroblastoma progression: specifically, MYCN, expressed at elevated level, transactivates the miRNA 17-5p-92 cluster, which inhibits p21 and BIM translation by interaction with their mRNA 3′ UTRs. Overexpression of miRNA 17-5p-92 cluster in MYCN-not-amplified neuroblastoma cells strongly augments their in vitro and in vivo tumorigenesis. In vitro or in vivo treatment with antagomir-17-5p abolishes the growth of MYCN-amplified and therapy-resistant neuroblastoma through p21 and BIM upmodulation, leading to cell cycling blockade and activation of apoptosis, respectively. In primary neuroblastoma, the majority of cases show a rise of miR-17-5p level leading to p21 downmodulation, which is particularly severe in patients with MYCN amplification and poor prognosis. Altogether, our studies demonstrate for the first time that antagomir treatment can abolish tumor growth in vivo, specifically in therapy-resistant neuroblastoma
The Meningococcal Vaccine Candidate Neisserial Surface Protein A (NspA) Binds to Factor H and Enhances Meningococcal Resistance to Complement
Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH) to fH-binding protein (fHbp) is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a ∼17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA), a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep) I chain of lipooligosaccharide (LOS), or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6–7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components
Differential Effect of TLR2 and TLR4 on the Immune Response after Immunization with a Vaccine against Neisseria meningitidis or Bordetella pertussis
Neisseria meningitidis and Bordetella pertussis are Gram-negative bacterial pathogens that can cause serious diseases in humans. N. meningitidis outer membrane vesicle (OMV) vaccines and whole cell pertussis vaccines have been successfully used in humans to control infections with these pathogens. The mechanisms behind their effectiveness are poorly defined. Here we investigated the role of Toll-like receptor (TLR) 2 and TLR4 in the induction of immune responses in mice after immunization with these vaccines. Innate and adaptive immune responses were compared between wild type mice and mice deficient in TLR2, TLR4, or TRIF. TRIF-deficient and TLR4-deficient mice showed impaired immunity after immunization. In contrast, immune responses were not lower in TLR2−/− mice but tended even to be higher after immunization. Together our data demonstrate that TLR4 activation contributes to the immunogenicity of the N. meningitidis OMV vaccine and the whole cell pertussis vaccine, but that TLR2 activation is not required
- …
