17 research outputs found
Cпектроскопия спонтанного комбинационного рассеяния для ex vivo диагностики внутричерепных опухолей
Neurosurgery of intracranial tumors, especially of glial origin, is a non-trivial task due to their infiltrative growth. In recent years, optical methods of intraoperative navigation have been actively used in neurosurgery. However, one of the most widely used approaches based on the selective accumulation of fluorescent contrast medium (5-ALA-induced protoporphyrin IX) by the tumor cannot be applied to a significant number of tumors due to its low accumulation. On the contrary, Raman spectroscopy, which allows analyzing the molecular composition of tissues while preserving all the advantages of the method of fluorescence spectroscopy, does not require the use of an exogenous dye and may become a method of choice when composing a system for intraoperative navigation or optical biopsy. This work presents the first results of using the principal component method to classify Raman spectra of human glioblastoma with intermediate processing of spectra to minimize possible errors from the fluorescence of both endogenous fluorophores and photosensitizers used in fluorescence navigation. As a result, differences were found in the principal component space, corresponding to tissue samples with microcystic components, extensive areas of necrosis, and foci of fresh hemorrhages. It is shown that this approach can serve as the basis for constructing a system for automatic intraoperative tissue classification based on the analysis of Raman spectra.Cпектроскопия спонтанного комбинационного рассеяния для ex vivo диагностики внутричерепных опухолей Нейрохирургия внутричерепных опухолей, особенно глиального происхождения, представляет нетривиальную задачу в силу их инфильтративного роста. В последние годы в нейрохирургии активно используются оптические методы интраоперационной навигации, однако один из наиболее широко распространенных подходов, основанный на селективном накоплении опухолью флуоресцентного контрастного вещества (5-АЛК индуцированного протопорфирина IX), не может быть применен для значимой части опухолей вследствие его низкого накопления. Напротив, спектроскопия комбинационного рассеяния, позволяющая проводить анализ молекулярного состава тканей с сохранением всех достоинств метода флуоресцентной спектроскопии, не требует при этом введения экзогенного красителя и может быть вариантом выбора при построении системы интраоперационной навигации или оптической биопсии. В настоящей работе представлены первые результаты использования метода главных компонент для классификации спектров комбинационного рассеяния глиобластомы человека с промежуточной обработкой спектров для минимизации возможных ошибок от флуоресценции как эндогенных флуорофоров, так и фотосенсибилизаторов, используемых при флуоресцентной навигации. В результате были обнаружены различия в пространстве главных компонент, соответствующие образцам тканей с микрокистозными компонентами, обширными участками некрозов, фокусами свежих кровоизлияний. Показано, что данный подход может послужить основой для построения системы автоматической интраоперационной классификации тканей на основе анализа спектров комбинационного рассеяния
Spontaneous Raman spectroscopy for intracranial tumors diagnostics ex vivo
Neurosurgery of intracranial tumors, especially of glial origin, is a non-trivial task due to their infiltrative growth. In recent years, optical methods of intraoperative navigation have been actively used in neurosurgery. However, one of the most widely used approaches based on the selective accumulation of fluorescent contrast medium (5-ALA-induced protoporphyrin IX) by the tumor cannot be applied to a significant number of tumors due to its low accumulation. On the contrary, Raman spectroscopy, which allows analyzing the molecular composition of tissues while preserving all the advantages of the method of fluorescence spectroscopy, does not require the use of an exogenous dye and may become a method of choice when composing a system for intraoperative navigation or optical biopsy. This work presents the first results of using the principal component method to classify Raman spectra of human glioblastoma with intermediate processing of spectra to minimize possible errors from the fluorescence of both endogenous fluorophores and photosensitizers used in fluorescence navigation. As a result, differences were found in the principal component space, corresponding to tissue samples with microcystic components, extensive areas of necrosis, and foci of fresh hemorrhages. It is shown that this approach can serve as the basis for constructing a system for automatic intraoperative tissue classification based on the analysis of Raman spectra