14 research outputs found

    Tobamovirus and Dianthovirus Movement Proteins Are Functionally Homologous

    Get PDF
    AbstractThe movement proteins (MPs) of tobacco mosaic tobamovirus (TMV) and red clover necrotic mosaic dianthovirus (RCNMV) enlarge plasmodesmata size exclusion limits, transport RNA from cell to cell, and bind nucleic acids in vitro. Despite these functional similarities, they have no sequence homology. However, they do appear to have similar secondary structures. We have used transgenic plants expressing either the TMV MP or the RCNMV MP, and a chimeric TMV that encodes the RCNMV MP as its only functional MP gene, to demonstrate that the MPs of TMV and RCNMV are functionally homologous. Further, both TMV and RCNMV can act as helper viruses to allow the cell-to-cell movement of the heterologous movement-defective viruses. These data support the conclusion that, despite other differences, such as particle morphology, host range, and sequence, TMV and RCNMV share a common mechanism for cell-to-cell movement

    T<scp>HE</scp> M<scp>ULTIFUNCTIONAL</scp> C<scp>APSID</scp> P<scp>ROTEINS OF</scp> P<scp>LANT</scp> RNA V<scp>IRUSES</scp>

    Full text link
    ▪ Abstract  This article summarizes studies of viral coat (capsid) proteins (CPs) of RNA plant viruses. In addition, we discuss and seek to interpret the knowledge accumulated to date. CPs are named for their primary function; to encapsidate viral genomic nucleic acids. However, encapsidation is only one feature of an extremely diverse array of structural, functional, and ecological roles played during viral infection and spread. Herein, we consider the evolution of viral CPs and their multitude of interactions with factors encoded by the virus, host plant, or viral vector (biological transmission agent) that influence the infection and epidemiological facets of plant disease. In addition, applications of today's understanding of CPs in the protection of crops from viral infection and use in the manufacture of valuable compounds are considered. </jats:p

    Conversion in the Requirement of Coat Protein in Cell-to-Cell Movement Mediated by the Cucumber Mosaic Virus Movement Protein

    No full text
    Plant viruses have movement protein (MP) gene(s) essential for cell-to-cell movement in hosts. Cucumber mosaic virus (CMV) requires its own coat protein (CP) in addition to the MP for intercellular movement. Our present results using variants of both CMV and a chimeric Brome mosaic virus with the CMV MP gene revealed that CMV MP truncated in its C-terminal 33 amino acids has the ability to mediate viral movement independently of CP. Coexpression of the intact and truncated CMV MPs extremely reduced movement of the chimeric viruses, suggesting that these heterogeneous CMV MPs function antagonistically. Sequential deletion analyses of the CMV MP revealed that the dispensability of CP occurred when the C-terminal deletion ranged between 31 and 36 amino acids and that shorter deletion impaired the ability of the MP to promote viral movement. This is the first report that a region of MP determines the requirement of CP in cell-to-cell movement of a plant virus
    corecore