358 research outputs found

    Pion and Kaon Production in Nucleon - Nucleon Collisions

    Get PDF
    Inclusive cross section for pion production in proton - proton collisions are calculated based on unintegrated parton distribution functions (uPDFs). In addition to purely gluonic terms the present approach includes also quark degrees of freedom. Phenomenological fragmentation functions from the literature are used. The new mechanisms are responsible for π+\pi^+ - π\pi^- asymmetry. In contrast to standard collinear approach, application of 2 \to 1 ktk_t - factorization approach can be extended towards much lower transverse momenta, both at mid and forward rapidity region. The results of the calculation are compared with SPS and RHIC data.Comment: a talk presented by Marta Tichoruk at the international conference MESON2006, Cracow, June 2006, 5 pages, 3 figure

    Modelling Backward Travelling Holes in Mixed Traffic Conditions Using an Agent Based Simulation

    Get PDF
    A spatial queue model in a multi-agent simulation framework is extended by introducing a more realistic behaviour, i.e. backward travelling holes. Space corresponding to a leaving vehicle is not available immediately on the upstream end of the link. Instead, the space travels backward with a constant speed. This space is named a ‘hole’. The resulting dynamics resemble Newell’s simplified kinematic wave model. Furthermore, fundamental diagrams from homogeneous and heterogeneous traffic simulations are presented. The sensitivity of the presented approach is tested with the help of flow density contours

    Extending scientific computing system with structural quantum programming capabilities

    Full text link
    We present a basic high-level structures used for developing quantum programming languages. The presented structures are commonly used in many existing quantum programming languages and we use quantum pseudo-code based on QCL quantum programming language to describe them. We also present the implementation of introduced structures in GNU Octave language for scientific computing. Procedures used in the implementation are available as a package quantum-octave, providing a library of functions, which facilitates the simulation of quantum computing. This package allows also to incorporate high-level programming concepts into the simulation in GNU Octave and Matlab. As such it connects features unique for high-level quantum programming languages, with the full palette of efficient computational routines commonly available in modern scientific computing systems. To present the major features of the described package we provide the implementation of selected quantum algorithms. We also show how quantum errors can be taken into account during the simulation of quantum algorithms using quantum-octave package. This is possible thanks to the ability to operate on density matrices

    Dijet correlations at RHIC, leading-order ktk_t-factorization approach versus next-to-leading order collinear approach

    Full text link
    We compare results of ktk_t-factorization approach and next-to-leading order collinear-factorization approach for dijet correlations in proton-proton collisions at RHIC energies. We discuss correlations in azimuthal angle as well as correlations in two-dimensional space of transverse momenta of two jets. Some ktk_t-factorization subprocesses are included for the first time in the literature. Different unintegrated gluon/parton distributions are used in the ktk_t-factorization approach. The results depend on UGDF/UPDF used. For collinear NLO case the situation depends significantly on whether we consider correlations of any two jets or correlations of leading jets only. In the first case the 222 \to 2 contributions associated with soft radiations summed up in the ktk_t-factorization approach dominate at ϕπ\phi \sim \pi and at equal moduli of jet transverse momenta. The collinear NLO 232 \to 3 contributions dominate over ktk_t-factorization cross section at small relative azimuthal angles as well as for asymmetric transverse momentum configurations. In the second case the NLO contributions vanish at small relative azimuthal angles and/or large jet transverse-momentum disbalance due to simple kinematical constraints. There are no such limitations for the ktk_t-factorization approach. All this makes the two approaches rather complementary. The role of several cuts is discussed and quantified.Comment: 26 pages, 17 figure

    Nonphotonic electrons at RHIC within ktk_t-factorization approach and with experimental semileptonic decay functions

    Full text link
    We discuss production of nonphotonic electrons in proton-proton scattering at RHIC. The distributions in rapidity and transverse momentum of charm and bottom quarks/antiquarks are calculated in the ktk_t-factorization approach. We use different unintegrated gluon distributions from the literature. The hadronization of heavy quarks is done by means of Peterson and Braaten et al. fragmentation functions. The semileptonic decay functions are found by fitting recent semileptonic data obtained by the CLEO and BABAR collaborations. We get good description of the data at large transverse momenta of electrons and find a missing strength concentrated at small transverse momenta of electrons. Plausible missing mechanisms are discussed.Comment: 16 pages, 11 figure

    Parton transverse momenta and Drell-Yan dilepton production

    Full text link
    The differential cross section for the dilepton production is calculated including Fermi motion of hadron constituents as well as emission from the ladders in the formalism of unintegrated parton distributions. We use unintegrated parton distributions which fulfil Kwieci\'nski evolution equations. Both zeroth- and first-order (for matrix element) contributions are included. We calculate azimuthal angular correlations between charged leptons and deviations from the pt(l+)=pt(l)p_t(l^+) = p_t(l^-) relation. We concentrate on the distribution in dilepton-pair transverse momentum. We find incident energy and virtuality dependence of the distribution in transverse momentum of the lepton pair. We study also azimuthal correlations between jet and dilepton pair and correlation in the (p1t(jet),p2t(l+l))(p_{1t}(jet),p_{2t}(l^+ l^-)) space. The results are compared with experimental data of the R209 and UA1 collaborations.Comment: 23 pages, 18 figures, slightly modified, a comment to b-space resummation adde

    Noise effects in the quantum search algorithm from the computational complexity point of view

    Full text link
    We analyse the resilience of the quantum search algorithm in the presence of quantum noise modelled as trace preserving completely positive maps. We study the influence of noise on computational complexity of the quantum search algorithm. We show that only for small amounts of noise the quantum search algorithm is still more efficient than any classical algorithm.Comment: 7 pages, 2 figure

    Humanized Mice for the Generation of HIV-1 Human Monoclonal Antibodies

    Get PDF
    Background: Despite the length of time HIV has been wreaking havoc on its victims, improvements in the prevention and treatment of HIV are needed. Anti-retroviral therapy can be effective but is expensive and not entirely accessible for people infected in third world countries. Several promising broadly neutralizing antibodies have been isolated from infected individuals; we propose that generating antigen specific human monoclonal antibodies using humanized mice further represents a promising approach to engineer prophylactic antibodies to reduce spread and infection of HIV. Methods: Immunodeficient mice were engrafted with fetal liver and thymus (BLT) prior to infection with different HIV isolates. HIV infection of the mice was monitored by viral load and antibody response followed by ELISA using gp120, gp41 or gp120/CD4 complex as antigens. Approximately 8-12 weeks post infection, spleens were harvested and splenocytes fused with human fusion partner HMMA 2.5 to isolate antibody-expressing hybridomas. Lead clones were scaled and purified for testing in functional assays such as TZM-bl neutralization assays as well as ADCVI to determine neutralizing and cytotoxic ability of the antibodies. Antibody sequences were also determined for analysis. Results: A robust, specific antibody response, of both IgG and IgA isotypes, was generated in response to HIV infection. Over 60 hybridomas were created that were not only immunoreactive with env antigens, but also had neutralization activity. Moreover, variable family usage was not limited and somatic mutation was clearly evident. Conclusions: These findings suggest that humanized BLT mice are a novel source for well-characterized, stable human monoclonal antibodies to HIV

    Markovian MC simulation of QCD evolution at NLO level with minimum k_T

    Full text link
    We present two Monte Carlo algorithms of the Markovian type which solve the modified QCD evolution equations at the NLO level. The modifications with respect to the standard DGLAP evolution concern the argument of the strong coupling constant alpha_S. We analyze the z - dependent argument and then the k_T - dependent one. The evolution time variable is identified with the rapidity. The two algorithms are tested to the 0.05% precision level. We find that the NLO corrections in the evolution of parton momentum distributions with k_T - dependent coupling constant are of the order of 10 to 20%, and in a small x region even up to 30%, with respect to the LO contributions.Comment: 32 pages, 9 pdf figure
    corecore