52 research outputs found

    Seasonal Migration of Sika Deer in the Oku-Chichibu Mountains, Central Japan

    Get PDF
    Movements and seasonal home ranges of 6 GPS collared sika deer were investigated at the Oku-Chichibu Mountains, central Honshu, from April 2009 to March 2010. All deer migrated between discrete summer and winter home ranges. The linear migration distance ranged from 2.5 to 31.9 km. Mean elevation during the summer and the winter ranged from 980 to 1,782 m, and from 1,204 to 1,723 m, respectively. Two deer were upward migrants and 4 deer were downward migrants. Taking into consideration of the relatively small snow accumulation in the summer home range, the possibility of autumn migration to avoid deep snow is low. The percentage of steep slope in the winter home range was higher than that in the summer. Bamboo grass was not found in the summer home range, but was predominant in the winter home range. Road density decreased in the winter home range compared to the summer. Only 2 out of 6 deer stayed mainly in the wildlife protection area during the winter. Our results indicate that the autumn migration was affected by winter forage and human disturbance, thereby assured the survival of the deer during winter.ArticleMAMMAL STUDY. 37(2):127-137 (2012)journal articl

    The Relationship Between GPS Sampling Interval and Estimated Daily Travel Distances in Chacma Baboons (Papio ursinus)

    Get PDF
    Modern studies of animal movement use the Global Positioning System (GPS) to estimate animals’ distance traveled. The temporal resolution of GPS fixes recorded should match those of the behavior of interest; otherwise estimates are likely to be inappropriate. Here, we investigate how different GPS sampling intervals affect estimated daily travel distances for wild chacma baboons (Papio ursinus). By subsampling GPS data collected at one fix per second for 143 daily travel distances (12 baboons over 11–12 days), we found that less frequent GPS fixes result in smaller estimated travel distances. Moving from a GPS frequency of one fix every second to one fix every 30 s resulted in a 33% reduction in estimated daily travel distance, while using hourly GPS fixes resulted in a 66% reduction. We then use the relationship we find between estimated travel distance and GPS sampling interval to recalculate published baboon daily travel distances and find that accounting for the predicted effect of sampling interval does not affect conclusions of previous comparative analyses. However, if short-interval or continuous GPS data—which are becoming more common in studies of primate movement ecology—are compared with historical (longer interval) GPS data in future work, controlling for sampling interval is necessary

    Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning

    Get PDF
    Background: Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to ‘fill in the gaps’ between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.Results: We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.Conclusions: This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed
    • …
    corecore