23 research outputs found

    Recombinant expression and biochemical characterization of a thermostable motor protein.

    Get PDF

    The relationship between biological and psychosocial risk factors and resting‐state functional connectivity in 2‐monthold Bangladeshi infants: A feasibility and pilot study

    Get PDF
    Childhood poverty has been associated with structural and functional alterations in the developing brain. However, poverty does not alter brain development directly, but acts through associated biological or psychosocial risk factors (e.g. malnutrition, family conflict). Yet few studies have investigated risk factors in the context of infant neurodevelopment, and none have done so in low‐resource settings such as Bangladesh, where children are exposed to multiple, severe biological and psychosocial hazards. In this feasibility and pilot study, usable resting‐state fMRI data were acquired in infants from extremely poor (n = 16) and (relatively) more affluent (n = 16) families in Dhaka, Bangladesh. Whole‐brain intrinsic functional connectivity (iFC) was estimated using bilateral seeds in the amygdala, where iFC has shown susceptibility to early life stress, and in sensory areas, which have exhibited less susceptibility to early life hazards. Biological and psychosocial risk factors were examined for associations with iFC. Three resting‐state networks were identified in within‐group brain maps: medial temporal/striatal, visual, and auditory networks. Infants from extremely poor families compared with those from more affluent families exhibited greater (i.e. less negative) iFC in precuneus for amygdala seeds; however, no group differences in iFC were observed for sensory area seeds. Height‐for‐age, a proxy for malnutrition/infection, was not associated with amygdala/precuneus iFC, whereas prenatal family conflict was positively correlated. Findings suggest that it is feasible to conduct infant fMRI studies in low‐resource settings. Challenges and practical steps for successful implementations are discussed

    Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling

    Get PDF
    Toll-like receptor (TLR) signaling is a key innate immunity response to pathogens. Recruitment of signaling adapters such as MAL (TIRAP) and MyD88 to the TLRs requires Toll/interleukin-1 receptor (TIR)-domain interactions, which remain structurally elusive. Here we show that MAL TIR domains spontaneously and reversibly form filaments in vitro. They also form cofilaments with TLR4 TIR domains and induce formation of MyD88 assemblies. A 7-Å-resolution cryo-EM structure reveals a stable MAL protofilament consisting of two parallel strands of TIR-domain subunits in a BB-loop-mediated head-to-tail arrangement. Interface residues that are important for the interaction are conserved among different TIR domains. Although large filaments of TLR4, MAL or MyD88 are unlikely to form during cellular signaling, structure-guided mutagenesis, combined with in vivo interaction assays, demonstrated that the MAL interactions defined within the filament represent a template for a conserved mode of TIR-domain interaction involved in both TLR and interleukin-1 receptor signaling

    L'economia e la psicologia

    No full text
    Although numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system. These vectors introduce C or N terminal EGFP and mCherry fluorescent and affinity tags, enabling direct analysis and purification of the expressed proteins. To maximize throughput and minimize the cost of protein production we combined Gateway cloning with Rolling Circle DNA Amplification. We demonstrate that as little as 0.1 ng of plasmid DNA is sufficient for template amplification and production of recombinant human protein in Leishmania tarentolae and Escherichia coli cell-free expression systems. Our experiments indicate that this approach can be applied to large gene libraries as it can be reliably performed in multi-well plates. The resulting protein expression pipeline provides a valuable new tool for applications of the post genomic era

    Adaption of the Leishmania cell-free expression system to high-throughput analysis of protein interactions

    No full text
    In this chapter, we present methods for adapting the eukaryotic cell-free expression system based on Leishmania tarentolae to high-throughput analysis of protein interactions. Specifically, we present a lysate optimization technique that minimizes the amount of unwanted premature termination products while balancing protein expression level and protein aggregation. Finally, we present methods for adapting the Leishmania cell-free system to the AlphaLISA-based protein interaction assay

    Infant functional connectivity fingerprints predict long-term language and pre-literacy outcomes

    Full text link
    AbstractFunctional brain networks undergo extensive development within the first few years of life. Previous studies have linked infant functional connectivity to cognitive abilities in toddlerhood. However, little is known regarding the long-term relevance of functional connections established in infancy for the protracted development of higher-order abilities of language and literacy. Employing a five-year longitudinal imaging project starting in infancy, this study utilizes resting-state functional MRI to demonstrate prospective associations between infant functional connectivity fingerprints and subsequent language and foundational literacy skills at a mean age of 6.5. These longitudinal associations are preserved when key environmental influences are controlled for and are independent of emergent language abilities in infancy, suggesting early development of functional network characteristics in supporting the acquisition of high-order language and pre-literacy skills. Altogether, the current results highlight the importance of functional organization established in infancy as a neural scaffold underlying the learning process of complex cognitive functions.</jats:p

    Relating anthropometric indicators to brain structure in 2-month-old Bangladeshi infants growing up in poverty: a pilot study

    Full text link
    ABSTRACTAnthropometric indicators, including stunting, underweight, and wasting, have previously been associated with poor neurocognitive outcomes. This link may exist because malnutrition and infection, which are known to affect height and weight, also impact brain structure according to animal models. However, a relationship between anthropometric indicators and brain structural measures has not been tested yet, perhaps because stunting, underweight, and wasting are uncommon in higher-resource settings. Further, with diminished anthropomorphic growth prevalent in low-resource settings, where biological and psychosocial hazards are most severe, one might expect additional links between measures of poverty, anthropometry, and brain structure. To begin to examine these relationships, we conducted an MRI study in 2-3-month-old infants growing up in the extremely impoverished urban setting of Dhaka, Bangladesh. The sample size was relatively small because the challenges of investigating infant brain structure in a low-resource setting needed to be realized and resolved before introducing a larger cohort. Initially, fifty-four infants underwent T1 sequences using 3T MRI, and structural images were segmented into gray and white matter maps, which were carefully evaluated for accurate tissue labeling by a pediatric neuroradiologist. Gray and white matter volumes from 29 infants (79 ± 10 days-of-age; F/M = 12/17), whose segmentations were of relatively high quality, were submitted to semi-partial correlation analyses with stunting, underweight, and wasting, which were measured using height-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ) scores. Positive semi-partial correlations (after adjusting for chronological age and sex and correcting for multiple comparisons) were observed between white matter volume and HAZ and WAZ; however, WHZ was not correlated with any measure of brain volume. In examining the role of poverty, no associations were observed between income-to-needs or maternal education and brain volumetric measures, suggesting that risk factors previously linked with poverty were not associated with total brain tissue volume pre- or peri-natally in this sample. Overall, these results provide the first link between diminished anthropomorphic growth and white matter volume in infancy. Challenges of conducting a developmental neuroimaging study in a low-resource country are described.</jats:p

    Functional Connectivity in Infancy and Toddlerhood Predicts Long-Term Language and Preliteracy Outcomes

    No full text
    Abstract Functional connectivity (FC) techniques can delineate brain organization as early as infancy, enabling the characterization of early brain characteristics associated with subsequent behavioral outcomes. Previous studies have identified specific functional networks in infant brains that underlie cognitive abilities and pathophysiology subsequently observed in toddlers and preschoolers. However, it is unknown whether and how functional networks emerging within the first 18 months of life contribute to the development of higher order, complex functions of language/literacy at school-age. This 5-year longitudinal imaging project starting in infancy, utilized resting-state functional magnetic resonance imaging and demonstrated prospective associations between FC in infants/toddlers and subsequent language and foundational literacy skills at 6.5 years old. These longitudinal associations were shown independently of key environmental influences and further present in a subsample of infant imaging data (≤12 months), suggesting early emerged functional networks specifically linked to high-order language and preliteracy skills. Moreover, emergent language skills in infancy and toddlerhood contributed to the prospective associations, implicating a role of early linguistic experiences in shaping the FC correlates of long-term oral language skills. The current results highlight the importance of functional organization established in infancy and toddlerhood as a neural scaffold underlying the learning process of complex cognitive functions.</jats:p

    DWI Techniques and Methods for GI Tract Imaging

    No full text
    Diffusion-weighted imaging, although based on an old concept, has been introduced in the clinical imaging protocols only during the last decade. Particularly in the gastrointestinal tract, there are many technical challenges related to the presence of physiologic motion in the form of peristalsis and respiration that in principle can hamper image quality of diffusion images. State-of-the-art gradient systems and radiofrequency coils may reduce these problems and thus provide adequate quality for diagnostic purposes. Different models have been tested and evaluated, while their corresponding imaging biomarkers are still under investigation to determine their clinical yield. Currently, diffusion-weighted imaging is predominantly used to improve lesion conspicuity and in some cases to provide tissue characterization or even assess treatment response.SCOPUS: ch.binfo:eu-repo/semantics/publishe
    corecore