259,533 research outputs found

    Resonant Interactions in Rotating Homogeneous Three-dimensional Turbulence

    Full text link
    Direct numerical simulations of three-dimensional (3D) homogeneous turbulence under rapid rigid rotation are conducted to examine the predictions of resonant wave theory for both small Rossby number and large Reynolds number. The simulation results reveal that there is a clear inverse energy cascade to the large scales, as predicted by 2D Navier-Stokes equations for resonant interactions of slow modes. As the rotation rate increases, the vertically-averaged horizontal velocity field from 3D Navier-Stokes converges to the velocity field from 2D Navier-Stokes, as measured by the energy in their difference field. Likewise, the vertically-averaged vertical velocity from 3D Navier-Stokes converges to a solution of the 2D passive scalar equation. The energy flux directly into small wave numbers in the kz=0k_z=0 plane from non-resonant interactions decreases, while fast-mode energy concentrates closer to that plane. The simulations are consistent with an increasingly dominant role of resonant triads for more rapid rotation

    Local molecular field theory for effective attractions between like charged objects in systems with strong Coulomb interactions

    Full text link
    Strong short ranged positional correlations involving counterions can induce a net attractive force between negatively charged strands of DNA, and lead to the formation of ion pairs in dilute ionic solutions. But the long range of the Coulomb interactions impedes the development of a simple local picture. We address this general problem by mapping the properties of a nonuniform system with Coulomb interactions onto those of a simpler system with short ranged intermolecular interactions in an effective external field that accounts for the averaged effects of appropriately chosen long ranged and slowly varying components of the Coulomb interactions. The remaining short ranged components combine with the other molecular core interactions and strongly affect pair correlations in dense or strongly coupled systems. We show that pair correlation functions in the effective short ranged system closely resemble those in the uniform primitive model of ionic solutions, and illustrate the formation of ion pairs and clusters at low densities. The theory accurately describes detailed features of the effective attraction between two equally charged walls at strong coupling and intermediate separations of the walls. New analytical results for the minimal coupling strength needed to get any attraction and for the separation where the attractive force is a maximum are presented.Comment: 8 pages, 5 figures. To be published in PNA

    Comparison of the Geometrical Characters Inside Quark- and Gluon-jet Produced by Different Flavor Quarks

    Full text link
    The characters of the angular distributions of quark jets and gluon jets with different flavors are carefully studied after introducing the cone angle of jets. The quark jets and gluon jets are identified from the 3-jet events which are produced by Monte Carlo simulation Jetset7.4 in e+e- collisions at s\sqrt s=91.2GeV. It turns out that the ranges of angular distributions of gluon jets are obviously wider than that of quark jets at the same energies. The average cone angles of gluon jets are much larger than that of quark jets. As the multiplicity or the transverse momentum increases, the cone-angle distribution without momentum weight of both the quark jet and gluon jet all increases, i.e the positive linear correlation are present, but the cone-angle distribution with momentum weight decreases at first, then increases when n > 4 or p_t > 2 GeV. The characters of cone angular distributions of gluon jets produced by quarks with different flavors are the same, while there are obvious differences for that of the quark jets with different flavors.Comment: 13 pages, 6 figures, to be published on the International Journal of Modern Physics

    Exactness of the Original Grover Search Algorithm

    Full text link
    It is well-known that when searching one out of four, the original Grover's search algorithm is exact; that is, it succeeds with certainty. It is natural to ask the inverse question: If we are not searching one out of four, is Grover's algorithm definitely not exact? In this article we give a complete answer to this question through some rationality results of trigonometric functions.Comment: 8 pages, 2 figure

    Artifact of the phonon-induced localization by variational calculations in the spin-boson model

    Full text link
    We present energy and free energy analyses on all variational schemes used in the spin-boson model at both T=0 and T≠0T\neq0. It is found that all the variational schemes have fail points, at where the variational schemes fail to provide a lower energy (or a lower free energy at T≠0T\neq0) than the displaced-oscillator ground state and therefore the variational ground state becomes unstable, which results in a transition from a variational ground state to a displaced oscillator ground state when the fail point is reached. Such transitions are always misidentied as crossover from a delocalized to localized phases in variational calculations, leading to an artifact of phonon-induced localization. Physics origin of the fail points and explanations for different transition behaviors with different spectral functions are found by studying the fail points of the variational schemes in the single mode case.Comment: 9 pages, 7 figure

    Doxorubicin Selectively Inhibits Brain versus Atrial Natriuretic Peptide Gene Expression in Cultured Neonatal Rat Myocytes

    Get PDF
    Doxorubicin is an antineoplastic agent with significant cardiotoxicity. We examined the effects of this agent on the expression of the natriuretic peptide (NP) genes in cultured neonatal rat atrial myocytes. Doxorubicin suppressed NP secretion, steady-state NP mRNA levels, and NP gene promoter activity. In each instance, brain NP (BNP) proved to be more sensitive than atrial NP (ANP) to the inhibitory effects of the drug. ICRF-187 and probucol reversed the inhibition by doxorubicin of ANP mRNA accumulation and ANP gene promoter activity while exerting no effect on BNP mRNA levels or promoter activity. This represents the first identification of the NP genes as targets of doxorubicin toxicity in the myocardial cell. This inhibition operates predominantly at a transcriptional locus and has more potent effects on BNP versus ANP secretion/gene expression. Measurement of BNP secretion/gene expression may provide a sensitive marker of early doxorubicin cardiotoxicity

    A mass-balance/photochemical assessment of DMS sea-to-air flux as inferred from NASA GTE PEM-West a and B observations

    Get PDF
    This study reports dimethyl sulfide (DMS) sea-to-air fluxes derived from a mass-balance/photochemical-modeling approach. The region investigated was the western North Pacific covering the latitude range of 0°-30°N. Two NASA airborne databases were used in this study: PEM-West A in September-October 1991 and PEM-West B in February-March 1994. A total of 35 boundary layer (BL) sampling runs were recorded between the two programs. However, after filtering these data for pollution impacts and DMS lifetime considerations, this total was reduced to 13. Input for each analysis consisted of atmospheric DMS measurements, the equivalent mixing depth (EMD) for DMS, and model estimated values for OH and NO3. The evaluation of the EMD took into account both DMS within the BL as well as that transported into the overlying atmospheric buffer layer (BuL). DMS fluxes ranged from 0.6 to 3.0 μmol m-2d-1 for PEM-West A (10 sample runs) and 1.4 to 1.9 μmol m-2d-1 for PEM-West B (3 sample runs). Sensitivity analyses showed that the photochemically evaluated DMS flux was most influenced by the DMS vertical profile and the diel profile for OH. A propagation of error analysis revealed that the uncertainty associated with individual flux determinations ranged from a factor of 1.3 to 1.5. Also assessed were potential systematic errors. The first of these relates to our noninclusion of large-scale mean vertical motion as it might appear in the form of atmospheric subsidence or as a convergence. Our estimates here would place this error in the range of O to 30%. By far the largest systematic error is that associated with stochastic events (e.g., those involving major changes in cloud coverage). In the latter case, sensitivity tests suggested that the error could be as high as a factor of 2. With improvements in such areas as BL sampling time, direct observations of OH, improved DMS vertical profiling, direct assessment of vertical velocity in the field, and preflight (24 hours) detailed meteorological data, it appears that the uncertainty in this approach could be reduced to ±25%. Copyright 1999 by the American Geophysical Union
    • …
    corecore