114 research outputs found

    An interpolation problem arising in a coupling of the finite element method with holomorphic basis functions

    Get PDF
    The purpose of this paper is to prove an interpolation theorem which arises in a method of coupling of a finite element and an analytical solution for boundary value problems with singularities

    Introductory clifford analysis

    Get PDF
    In this chapter an introduction is given to Clifford analysis and the underlying Clifford algebras. The functions under consideration are defined on Euclidean space and take values in the universal real or complex Clifford algebra, the structure and properties of which are also recalled in detail. The function theory is centered around the notion of a monogenic function, which is a null solution of a generalized Cauchy–Riemann operator, which is rotation invariant and factorizes the Laplace operator. In this way, Clifford analysis may be considered as both a generalization to higher dimension of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis. A notion of monogenicity may also be associated with the vectorial part of the Cauchy–Riemann operator, which is called the Dirac operator; some attention is paid to the intimate relation between both notions. Since a product of monogenic functions is, in general, no longer monogenic, it is crucial to possess some tools for generating monogenic functions: such tools are provided by Fueter’s theorem on one hand and the Cauchy–Kovalevskaya extension theorem on the other hand. A corner stone in this function theory is the Cauchy integral formula for representation of a monogenic function in the interior of its domain of monogenicity. Starting from this representation formula and related integral formulae, it is possible to consider integral transforms such as Cauchy, Hilbert, and Radon transforms, which are important both within the theoretical framework and in view of possible applications

    Matrix representations of a special polynomial sequence in arbitrary dimension

    Get PDF
    This paper provides an insight into different structures of a special polynomial sequence of binomial type in higher dimensions with values in a Clifford algebra. The elements of the special polynomial sequence are homogeneous hypercomplex differentiable (monogenic) functions of different degrees and their matrix representation allows to prove their recursive construction in analogy to the complex power functions. This property can somehow be considered as a compensation for the loss of multiplicativity caused by the non-commutativity of the underlying algebra.Fundação para a Ciência e a Tecnologia (FCT

    Harmonic analysis and hypercomplex function theory in co-dimension one

    Get PDF
    Fundamentals of a function theory in co-dimension one for Clifford algebra valued functions over ℝn+1 are considered. Special attention is given to their origins in analytic properties of holomorphic functions of one and, by some duality reasons, also of several complex variables. Due to algebraic peculiarities caused by non-commutativity of the Clifford product, generalized holomorphic functions are characterized by two different but equivalent properties: on one side by local derivability (existence of a well defined derivative related to co-dimension one) and on the other side by differentiability (existence of a local approximation by linear mappings related to dimension one). As important applications, sequences of harmonic Appell polynomials are considered whose definition and explicit analytic representations rely essentially on both dual approaches.The work of the first, second and fourth authors was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e Tecnologia”), within project PEst-OE/MAT/UI4106/2013. The work of the second author was supported by Portuguese funds through the CMAT - Centre of Mathematics and FCT within the Project UID/MAT/00013/2013

    Riemann-Hilbert problems for poly-Hardy space on the unit ball

    Get PDF
    In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane

    Quaternionic factorization of the Schroedinger operator and its applications to some first order systems of mathematical physics

    Full text link
    We consider the following first order systems of mathematical physics. 1.The Dirac equation with scalar potential. 2.The Dirac equation with electric potential. 3.The Dirac equation with pseudoscalar potential. 4.The system describing non-linear force free magnetic fields or Beltrami fields with nonconstant proportionality factor. 5.The Maxwell equations for slowly changing media. 6.The static Maxwell system. We show that all this variety of first order systems reduces to a single quaternionic equation the analysis of which in its turn reduces to the solution of a Schroedinger equation with biquaternionic potential. In some important situations the biquaternionic potential can be diagonalized and converted into scalar potentials

    Quaternion Analysis for Generalized Electromagnetic Fields of Dyons in Isotropic Medium

    Get PDF
    Quaternion analysis of time dependent Maxwell's equations in presence of electric and magnetic charges has been developed and the solutions for the classical problem of moving charges (electric and magnetic) are obtained in unique, simple and consistent manner

    Riemann-Hilbert problems for monogenic functions in axially symmetric domains

    Get PDF
    We consider Riemann-Hilbert boundary value problems (for short RHBVPs) with variable coefficients for axially symmetric monogenic functions defined in axial symmetric domains. This is done by constructing a method to reduce the RHBVPs for axially symmetric monogenic functions defined in four-dimensional axial symmetric domains into the RHBVPs for analytic functions defined over the complex plane. Then we derive solutions to the corresponding Schwarz problem. Finally, we generalize the results obtained to null-solutions of (D−α)ϕ=0, α∈R, where R denotes the field of real numbers

    Complex-Distance Potential Theory and Hyperbolic Equations

    Full text link
    An extension of potential theory in R^n is obtained by continuing the Euclidean distance function holomorphically to C^n. The resulting Newtonian potential is generated by an extended source distribution D(z) in C^n whose restriction to R^n is the delta function. This provides a natural model for extended particles in physics. In C^n, interpreted as complex spacetime, D(z) acts as a propagator generating solutions of the wave equation from their initial values. This gives a new connection between elliptic and hyperbolic equations that does not assume analyticity of the Cauchy data. Generalized to Clifford analysis, it induces a similar connection between solutions of elliptic and hyperbolic Dirac equations. There is a natural application to the time-dependent, inhomogeneous Dirac and Maxwell equations, and the `electromagnetic wavelets' introduced previously are an example.Comment: 25 pages, submited to Proceedings of 5th Intern. Conf. on Clifford Algebras, Ixtapa, June 24 - July 4, 199
    corecore