71 research outputs found

    Two novel classes of solvable many-body problems of goldfish type with constraints

    Get PDF
    Two novel classes of many-body models with nonlinear interactions "of goldfish type" are introduced. They are solvable provided the initial data satisfy a single constraint (in one case; in the other, two constraints): i. e., for such initial data the solution of their initial-value problem can be achieved via algebraic operations, such as finding the eigenvalues of given matrices or equivalently the zeros of known polynomials. Entirely isochronous versions of some of these models are also exhibited: i.e., versions of these models whose nonsingular solutions are all completely periodic with the same period.Comment: 30 pages, 2 figure

    A conjecture on Exceptional Orthogonal Polynomials

    Get PDF
    Exceptional orthogonal polynomial systems (X-OPS) arise as eigenfunctions of Sturm-Liouville problems and generalize in this sense the classical families of Hermite, Laguerre and Jacobi. They also generalize the family of CPRS orthogonal polynomials. We formulate the following conjecture: every exceptional orthogonal polynomial system is related to a classical system by a Darboux-Crum transformation. We give a proof of this conjecture for codimension 2 exceptional orthogonal polynomials (X2-OPs). As a by-product of this analysis, we prove a Bochner-type theorem classifying all possible X2-OPS. The classification includes all cases known to date plus some new examples of X2-Laguerre and X2-Jacobi polynomials

    Quasi-exact solvability beyond the SL(2) algebraization

    Full text link
    We present evidence to suggest that the study of one dimensional quasi-exactly solvable (QES) models in quantum mechanics should be extended beyond the usual \sla(2) approach. The motivation is twofold: We first show that certain quasi-exactly solvable potentials constructed with the \sla(2) Lie algebraic method allow for a new larger portion of the spectrum to be obtained algebraically. This is done via another algebraization in which the algebraic hamiltonian cannot be expressed as a polynomial in the generators of \sla(2). We then show an example of a new quasi-exactly solvable potential which cannot be obtained within the Lie-algebraic approach.Comment: Submitted to the proceedings of the 2005 Dubna workshop on superintegrabilit

    Exceptional orthogonal polynomials and the Darboux transformation

    Get PDF
    We adapt the notion of the Darboux transformation to the context of polynomial Sturm-Liouville problems. As an application, we characterize the recently described XmX_m Laguerre polynomials in terms of an isospectral Darboux transformation. We also show that the shape-invariance of these new polynomial families is a direct consequence of the permutability property of the Darboux-Crum transformation.Comment: corrected abstract, added references, minor correction

    Symmetries of Discrete Dynamical Systems Involving Two Species

    Get PDF
    The Lie point symmetries of a coupled system of two nonlinear differential-difference equations are investigated. It is shown that in special cases the symmetry group can be infinite dimensional, in other cases up to 10 dimensional. The equations can describe the interaction of two long molecular chains, each involving one type of atoms.Comment: 40 pages, no figures, typed in AMS-LaTe

    Exceptional orthogonal polynomials and new exactly solvable potentials in quantum mechanics

    Full text link
    In recent years, one of the most interesting developments in quantum mechanics has been the construction of new exactly solvable potentials connected with the appearance of families of exceptional orthogonal polynomials (EOP) in mathematical physics. In contrast with families of (Jacobi, Laguerre and Hermite) classical orthogonal polynomials, which start with a constant, the EOP families begin with some polynomial of degree greater than or equal to one, but still form complete, orthogonal sets with respect to some positive-definite measure. We show how they may appear in the bound-state wavefunctions of some rational extensions of well-known exactly solvable quantum potentials. Such rational extensions are most easily constructed in the framework of supersymmetric quantum mechanics (SUSYQM), where they give rise to a new class of translationally shape invariant potentials. We review the most recent results in this field, which use higher-order SUSYQM. We also comment on some recent re-examinations of the shape invariance condition, which are independent of the EOP construction problem.Comment: 21 pages, no figure; communication at the Symposium Symmetries in Science XV, July 31-August 5, 2011, Bregenz, Austri

    Low-lying spectra in anharmonic three-body oscillators with a strong short-range repulsion

    Full text link
    Three-body Schroedinger equation is studied in one dimension. Its two-body interactions are assumed composed of the long-range attraction (dominated by the L-th-power potential) in superposition with a short-range repulsion (dominated by the (-K)-th-power core) plus further subdominant power-law components if necessary. This unsolvable and non-separable generalization of Calogero model (which is a separable and solvable exception at L = K = 2) is presented in polar Jacobi coordinates. We derive a set of trigonometric identities for the potentials which generalizes the well known K=2 identity of Calogero to all integers. This enables us to write down the related partial differential Schroedinger equation in an amazingly compact form. As a consequence, we are able to show that all these models become separable and solvable in the limit of strong repulsion.Comment: 18 pages plus 6 pages of appendices with new auxiliary identitie

    Quasi-Exact Solvability and the direct approach to invariant subspaces

    Full text link
    We propose a more direct approach to constructing differential operators that preserve polynomial subspaces than the one based on considering elements of the enveloping algebra of sl(2). This approach is used here to construct new exactly solvable and quasi-exactly solvable quantum Hamiltonians on the line which are not Lie-algebraic. It is also applied to generate potentials with multiple algebraic sectors. We discuss two illustrative examples of these two applications: an interesting generalization of the Lam\'e potential which posses four algebraic sectors, and a quasi-exactly solvable deformation of the Morse potential which is not Lie-algebraic.Comment: 17 pages, 3 figure

    Exchange operator formalism for N-body spin models with near-neighbors interactions

    Get PDF
    We present a detailed analysis of the spin models with near-neighbors interactions constructed in our previous paper [Phys. Lett. B 605 (2005) 214] by a suitable generalization of the exchange operator formalism. We provide a complete description of a certain flag of finite-dimensional spaces of spin functions preserved by the Hamiltonian of each model. By explicitly diagonalizing the Hamiltonian in the latter spaces, we compute several infinite families of eigenfunctions of the above models in closed form in terms of generalized Laguerre and Jacobi polynomials.Comment: RevTeX, 31 pages, no figures; important additional conten

    A Family of Quasi-solvable Quantum Many-body Systems

    Get PDF
    We construct a family of quasi-solvable quantum many-body systems by an algebraic method. The models contain up to two-body interactions and have permutation symmetry. We classify these models under the consideration of invariance property. It turns out that this family includes the rational, hyperbolic (trigonometric) and elliptic Inozemtsev models as the particular cases.Comment: 9 pages, REVTeX4, final versio
    corecore