2,882 research outputs found
Adolescence as a Sensitive Period of Brain Development
Most research on sensitive periods has focussed on early sensory, motor, and language development, but it has recently been suggested that adolescence might represent a second ‘window of opportunity’ in brain development. Here, we explore three candidate areas of development that are proposed to undergo sensitive periods in adolescence: memory, the effects of social stress, and drug use. We describe rodent studies, neuroimaging, and large-scale behavioural studies in humans that have yielded data that are consistent with heightened neuroplasticity in adolescence. Critically however, concrete evidence for sensitive periods in adolescence is mostly lacking. To provide conclusive evidence, experimental studies are needed that directly manipulate environmental input and compare effects in child, adolescent, and adult groups
Signal processing in local neuronal circuits based on activity-dependent noise and competition
We study the characteristics of weak signal detection by a recurrent neuronal
network with plastic synaptic coupling. It is shown that in the presence of an
asynchronous component in synaptic transmission, the network acquires
selectivity with respect to the frequency of weak periodic stimuli. For
non-periodic frequency-modulated stimuli, the response is quantified by the
mutual information between input (signal) and output (network's activity), and
is optimized by synaptic depression. Introducing correlations in signal
structure resulted in the decrease of input-output mutual information. Our
results suggest that in neural systems with plastic connectivity, information
is not merely carried passively by the signal; rather, the information content
of the signal itself might determine the mode of its processing by a local
neuronal circuit.Comment: 15 pages, 4 pages, in press for "Chaos
On the Radii of Close-in Giant Planets
The recent discovery that the close-in extrasolar giant planet, HD209458b,
transits its star has provided a first-of-its-kind measurement of the planet's
radius and mass. In addition, there is a provocative detection of the light
reflected off of the giant planet, Boo b. Including the effects of
stellar irradiation, we estimate the general behavior of radius/age
trajectories for such planets and interpret the large measured radii of
HD209458b and Boo b in that context. We find that HD209458b must be a
hydrogen-rich gas giant. Furthermore, the large radius of close-in gas giant is
not due to the thermal expansion of its atmosphere, but to the high residual
entropy that remains throughout its bulk by dint of its early proximity to a
luminous primary. The large stellar flux does not inflate the planet, but
retards its otherwise inexorable contraction from a more extended configuration
at birth. This implies either that such a planet was formed near its current
orbital distance or that it migrated in from larger distances (0.5 A.U.),
no later than a few times years of birth.Comment: aasms4 LaTeX, 1 figure, accepted to Ap.J. Letter
Sub-Saturn Planet Candidates to HD 16141 and HD 46375
Precision Doppler measurements from the Keck/HIRES spectrometer reveal
periodic Keplerian velocity variations in the stars HD 16141 and HD 46375. HD
16141 (G5 IV) has a period of 75.8 d and a velocity amplitude of 11 m/s,
yielding a companion having Msini = 0.22 Mjup and a semimajor axis, a = 0.35
AU. HD 46375 (K1 IV/V) has a period of 3.024 d and a velocity amplitude of 35
m/s, yielding a companion with Msini=0.25 Mjup, a semimajor axis of a = 0.041
AU, and an eccentricity of 0.04 (consistent with zero). These companions
contribute to the rising planet mass function toward lower masses.Comment: 4 Figure
Long-Term Multiwavelength Studies of High-Redshift Blazar 0836+710
Aims. The observation of gamma -ray flares from blazar 0836+710 in 2011,
following a period of quiescence, offered an opportunity to study correlated
activity at different wavelengths for a high-redshift (z=2.218) active galactic
nucleus. Methods. Optical and radio monitoring, plus Fermi-LAT gamma-ray
monitoring provided 2008-2012 coverage, while Swift offered auxiliary optical,
ultraviolet, and X-ray information. Other contemporaneous observations were
used to construct a broad-band spectral energy distribution. Results. There is
evidence of correlation but not a measurable lag between the optical and
gamma-ray flaring emission. On the contrary, there is no clear correlation
between radio and gamma-ray activity, indicating radio emission regions that
are unrelated to the parts of the jet that produce the gamma-rays. The
gamma-ray energy spectrum is unusual in showing a change of shape from a power
law to a curved spectrum when going from the quiescent state to the active
state.Comment: 11 pages, 10 figures, Accepted for publication in A&
The broadband emission properties of AGN jets
The origin of the high-energy emission of blazars is still a matter of
debate. To investigate the emission mechanism of extragalactic outflows and to
pin down the location of the emission, we have constructed a broadband spectral
energy distribution (SED) database covering from the radio to the gamma-ray
band for the complete MOJAVE sample, which consists of 135 relativistically
beamed AGN with well-studied parsec-scale jets. Typically, the broadband SEDs
of blazars shows a double-humped profile. It is believed that the lower-energy
hump is due to synchrotron emission from the radio jet, and the higher-energy
hump is generated by i) inverse-Compton upscattered seed photons (leptonic),
ii) proton-induced shower (hadronic). Combining the results of high-resolution
VLBI observations and the gamma-ray properties of the MOJAVE sources, we
attempt to reveal the origin of the high-energy emission in relativistic jets,
and search for correlations between VLBI and high-energy properties.Comment: 4 pages, 1 figure, 10th European VLBI Network Symposium and EVN Users
Meeting: VLBI and the new generation of radio arrays, September 20-24, 2010,
Manchester U
Ten Low Mass Companions from the Keck Precision Velocity Survey
Ten new low mass companions have emerged from the Keck precision Doppler
velocity survey, with minimum (msini) masses ranging from 0.8 mjup to 0.34
msun. Five of these are planet candidates with msini < 12 mjup, two are brown
dwarf candidates with msini ~30 mjup, and three are low mass stellar
companions. Hipparcos astrometry reveals the orbital inclinations and masses
for three of the (more massive) companions, and it provides upper limits to the
masses for the rest. A new class of extrasolar planet is emerging,
characterized by nearly circular orbits and orbital radii greater than 1 AU.
The planet HD 4208b appears to be a member of this new class. The mass
distribution of extrasolar planets continues to exhibit a rapid rise from 10
mjup toward the lowest detectable masses near 1 msat.Comment: 26 pages, TeX, plus 13 postscript figure
F-GAMMA: On the phenomenological classification of continuum radio spectra variability patterns of Fermi blazars
The F-GAMMA program is a coordinated effort to investigate the physics of
Active Galactic Nuclei (AGNs) via multi-frequency monitoring of Fermi blazars.
In the current study we show and discuss the evolution of broad-band radio
spectra, which are measured at ten frequencies between 2.64 and 142 GHz using
the Effelsberg 100-m and the IRAM 30-m telescopes. It is shown that any of the
78 sources studied can be classified in terms of their variability
characteristics in merely 5 types of variability. It is argued that these can
be attributed to only two classes of variability mechanisms. The first four
types are dominated by spectral evolution and can be described by a simple
two-component system composed of: (a) a steep quiescent spectral component from
a large scale jet and (b) a time evolving flare component following the
"Shock-in-Jet" evolutionary path. The fifth type is characterised by an
achromatic change of the broad band spectrum, which could be attributed to a
different mechanism, likely involving differential Doppler boosting caused by
geometrical effects. Here we present the classification, the assumed physical
scenario and the results of calculations that have been performed for the
spectral evolution of flares.Comment: Proceedings of the conference: "The Central Kiloparsec in Galactic
Nucleic: Astronomy at High Angular Resolution 2011", August 29 - September 2,
2011, Bad Honnef, German
A Spectroscopic Study of the Ancient Milky Way: F- and G-Type Stars in the Third Data Release of the Sloan Digital Sky Survey
(Abridged) We perform an analysis of spectra and photometry for 22,770 stars
included in the third data release (DR3) of the SDSS. We measure radial
velocities and, based on a model-atmosphere analysis, derive estimates ofthe
atmospheric parameters (effective temperature, surface gravity, and [Fe/H]) for
each star. Stellar evolution models are then used to estimate distances. The
SDSS sample covers a range in stellar brightness of 14 < V < 22, and comprises
large numbers of F- and G-type stars from the thick-disk and halo populations
(up to 100 kpc from the galactic plane), therefore including some of the oldest
stars in the Milky Way. In agreement with previous results from the literature,
we find that halo stars exhibit a broad range of iron abundances, with a peak
at [Fe/H] ~ -1.4. This population exhibits essentially no galactic rotation.
Thick-disk G-dwarf stars at distances from the galactic plane in the range
1<|z|<3 kpc show a much more compact metallicity distribution, with a maximum
at [Fe/H] ~ -0.7, and a median galactic rotation velocity at that metallicity
of 157 +/- 4 km/s (a lag relative to the thin disk of 63 km/s). A comparison of
color indices and metal abundances with isochrones indicates that no
significant star formation has taken place in the halo in the last ~ 11 Gyr,
but there are thick-disk stars which are at least 2 Gyr younger. We find the
metallicities of thick-disk stars to be nearly independent of galactocentric
distance between 5 and 14 kpc, in contrast with the marked gradients found in
the literature for the thin disk. No vertical metallicity gradient is apparent
for the thick disk, but we detect a gradient inits rotational velocity of -16
+/- 4 km/s/kpc between 1 and 3 kpc from the plane.Comment: 18 pages, 16 figures; accepted for publication in the ApJ; also
available from http://hebe.as.utexas.edu
- …
