40 research outputs found
Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations
We reconsider the conceptual foundations of the renormalization-group (RG)
formalism, and prove some rigorous theorems on the regularity properties and
possible pathologies of the RG map. Regarding regularity, we show that the RG
map, defined on a suitable space of interactions (= formal Hamiltonians), is
always single-valued and Lipschitz continuous on its domain of definition. This
rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the pathological side, we make rigorous some arguments of
Griffiths, Pearce and Israel, and prove in several cases that the renormalized
measure is not a Gibbs measure for any reasonable interaction. This means that
the RG map is ill-defined, and that the conventional RG description of
first-order phase transitions is not universally valid. For decimation or
Kadanoff transformations applied to the Ising model in dimension ,
these pathologies occur in a full neighborhood of the low-temperature part of the first-order
phase-transition surface. For block-averaging transformations applied to the
Ising model in dimension , the pathologies occur at low temperatures
for arbitrary magnetic-field strength. Pathologies may also occur in the
critical region for Ising models in dimension . We discuss in detail
the distinction between Gibbsian and non-Gibbsian measures, and give a rather
complete catalogue of the known examples. Finally, we discuss the heuristic and
numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also
ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks
Cellular processes are “noisy”. In each cell, concentrations of molecules are subject to random fluctuations due to the small numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state measurements of network components, a key need is to develop efficient methods to simulate and compute these distributions. We describe innovations in stochastic modeling coupled with approaches to this computational challenge: first, an approach to modeling intrinsic noise via solution of the chemical master equation, and second, a convolution technique to account for contributions of extrinsic noise. We show how these techniques can be combined in a streamlined procedure for evaluation of different sources of variability in a biochemical network. Evaluation and illustrations are given in analysis of two well-characterized synthetic gene circuits, as well as a signaling network underlying the mammalian cell cycle entry
In Silico Ascription of Gene Expression Differences to Tumor and Stromal Cells in a Model to Study Impact on Breast Cancer Outcome
Breast tumors consist of several different tissue components. Despite the heterogeneity, most gene expression analyses have traditionally been performed without prior microdissection of the tissue sample. Thus, the gene expression profiles obtained reflect the mRNA contribution from the various tissue components. We utilized histopathological estimations of area fractions of tumor and stromal tissue components in 198 fresh-frozen breast tumor tissue samples for a cell type-associated gene expression analysis associated with distant metastasis. Sets of differentially expressed gene-probes were identified in tumors from patients who developed distant metastasis compared with those who did not, by weighing the contribution from each tumor with the relative content of stromal and tumor epithelial cells in their individual tumor specimen. The analyses were performed under various assumptions of mRNA transcription level from tumor epithelial cells compared with stromal cells. A set of 30 differentially expressed gene-probes was ascribed solely to carcinoma cells. Furthermore, two sets of 38 and five differentially expressed gene-probes were mostly associated to tumor epithelial and stromal cells, respectively. Finally, a set of 26 differentially expressed gene-probes was identified independently of cell type focus. The differentially expressed genes were validated in independent gene expression data from a set of laser capture microdissected invasive ductal carcinomas. We present a method for identifying and ascribing differentially expressed genes to tumor epithelial and/or stromal cells, by utilizing pathologic information and weighted t-statistics. Although a transcriptional contribution from the stromal cell fraction is detectable in microarray experiments performed on bulk tumor, the gene expression differences between the distant metastasis and no distant metastasis group were mostly ascribed to the tumor epithelial cells of the primary breast tumors. However, the gene PIP5K2A was found significantly elevated in stroma cells in distant metastasis group, compared to stroma in no distant metastasis group. These findings were confirmed in gene expression data from the representative compartments from microdissected breast tissue. The method described was also found to be robust to different histopathological procedures
"Dangerous to Themselves and Others, and of Public Scandal": The Internment Procedure
Abstract
Through G.'s admission and medical files, this chapter illustrates internment laws and procedures, highlighting how Fascism pushed pre-existing legislation to its extreme consequences. In reconstructing internment's bureaucratic and legal practices, the chapter emphasises how the law could be bent to accommodate the regime's need to isolate those perceived as "different" and how psychiatry acquiesced in offering to "correct" individuals considered "non-conforming", "amoral", "immoral", "deviant", rebellious and, among them, homosexuals, in exchange for an increase of power and status
A correction for sample overlap in genome-wide association studies in a polygenic pleiotropy-informed framework.
BACKGROUND: There is considerable evidence that many complex traits have a partially shared genetic basis, termed pleiotropy. It is therefore useful to consider integrating genome-wide association study (GWAS) data across several traits, usually at the summary statistic level. A major practical challenge arises when these GWAS have overlapping subjects. This is particularly an issue when estimating pleiotropy using methods that condition the significance of one trait on the signficance of a second, such as the covariate-modulated false discovery rate (cmfdr). RESULTS: We propose a method for correcting for sample overlap at the summary statistic level. We quantify the expected amount of spurious correlation between the summary statistics from two GWAS due to sample overlap, and use this estimated correlation in a simple linear correction that adjusts the joint distribution of test statistics from the two GWAS. The correction is appropriate for GWAS with case-control or quantitative outcomes. Our simulations and data example show that without correcting for sample overlap, the cmfdr is not properly controlled, leading to an excessive number of false discoveries and an excessive false discovery proportion. Our correction for sample overlap is effective in that it restores proper control of the false discovery rate, at very little loss in power. CONCLUSIONS: With our proposed correction, it is possible to integrate GWAS summary statistics with overlapping samples in a statistical framework that is dependent on the joint distribution of the two GWAS
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe