216 research outputs found
Does the Slim-Disk Model Correctly Consider Photon-Trapping Effects?
We investigate the photon-trapping effects in the super-critical black hole
accretion flows by solving radiation transfer as well as the energy equations
of radiation and gas. It is found that the slim-disk model generally
overestimates the luminosity of the disk at around the Eddington luminosity
(L_E) and is not accurate in describing the effective temperature profile,
since it neglects time delay between energy generation at deeper inside the
disk and energy release at the surface. Especially, the photon-trapping effects
are appreciable even below L ~ L_E, while they appear above ~ 3L_E according to
the slim disk. Through the photon-trapping effects, the luminosity is reduced
and the effective temperature profile becomes flatter than r^{-3/4} as in the
standard disk. In the case that the viscous heating is effective only around
the equatorial plane, the luminosity is kept around the Eddington luminosity
even at very large mass accretion rate, Mdot>>L_E/c^2. The effective
temperature profile is almost flat, and the maximum temperature decreases in
accordance with rise in the mass accretion rate. Thus, the most luminous radius
shifts to the outer region when Mdot/(L_E/c^2) >> 10^2. In the case that the
energy is dissipated equally at any heights, the resultant luminosity is
somewhat larger than in the former case, but the energy-conversion efficiency
still decreases with increase of the mass accretion rate, as well. The most
luminous radius stays around the inner edge of the disk in the latter case.
Hence, the effective temperature profile is sensitive to the vertical
distribution of energy production rates, so is the spectral shape. Future
observations of high L/L_E objects will be able to test our model.Comment: 10 pages, 7 figures, accepted for publication in Ap
Dependence of pp->pp pi0 near Threshold on the Spin of the Colliding Nucleons
A polarized internal atomic hydrogen target and a stored, polarized beam are
used to measure the spin-dependent total cross section Delta_sigma_T/sigma_tot,
as well as the polar integrals of the spin correlation coefficient combination
A_xx-A_yy, and the analyzing power A_y for pp-> pp pi0 at four bombarding
energies between 325 and 400 MeV. This experiment is made possible by the use
of a cooled beam in a storage ring. The polarization observables are used to
study the contribution from individual partial waves.Comment: 6 pages, 1 table, 4 figures, corrected equations 2 and
Spin correlations in pion production near threshold
A first measurement of longitudinal as well as transverse spin correlation
coefficients for the reaction was made using a
polarized proton target and a polarized proton beam. We report kinematically
complete measurements for this reaction at 325, 350, 375 and 400 MeV beam
energy. The spin correlation coefficients and the analyzing power as well as angular
distributions for and the polarization observables
were extracted. Partial wave cross sections for dominant
transition channels were obtained from a partial wave analysis that included
the transitions with final state angular momenta of . The measurements
of the polarization observables are compared
with the predictions from the J\"ulich meson exchange model. The agreement is
very good at 325 MeV, but it deteriorates increasingly for the higher energies.
At all energies agreement with the model is better than for the reaction
.Comment: Preprint, 21 pp, submitted to Phys. Rev. C. Keywords: Mesons,
Polarization, Spin Correlations, Few body system
Farm Energy: Tracking the energy use on your farm
Find out how to track your energy use on the farm with a simple energy log by using the provided Excel file linked within the PDF.https://lib.dr.iastate.edu/extension_ag_pubs/1034/thumbnail.jp
Comparative histological and immunohistochemical study of sea star tube feet (Echinodermata, Asteroidea)
peer reviewe
The tube feet of sea urchins and sea stars contain functionally different mutable collagenous tissues
peer reviewe
- …
