151 research outputs found
Recommended from our members
Epstein-Barr virus: clinical and epidemiological revisits and genetic basis of oncogenesis
Epstein-Barr virus (EBV) is classified as a member in the order herpesvirales, family herpesviridae, subfamily gammaherpesvirinae and the genus lymphocytovirus. The virus is an exclusively human pathogen and thus also termed as human herpesvirus 4 (HHV4). It was the first oncogenic virus recognized and has been incriminated in the causation of tumors of both lymphatic and epithelial nature. It was reported in some previous studies that 95% of the population worldwide are serologically positive to the virus. Clinically, EBV primary infection is almost silent, persisting as a life-long asymptomatic latent infection in B cells although it may be responsible for a transient clinical syndrome called infectious mononucleosis. Following reactivation of the virus from latency due to immunocompromised status, EBV was found to be associated with several tumors. EBV linked to oncogenesis as detected in lymphoid tumors such as Burkitt's lymphoma (BL), Hodgkin's disease (HD), post-transplant lymphoproliferative disorders (PTLD) and T-cell lymphomas (e.g. Peripheral T-cell lymphomas; PTCL and Anaplastic large cell lymphomas; ALCL). It is also linked to epithelial tumors such as nasopharyngeal carcinoma (NPC), gastric carcinomas and oral hairy leukoplakia (OHL). In vitro, EBV many studies have demonstrated its ability to transform B cells into lymphoblastoid cell lines (LCLs). Despite these malignancies showing different clinical and epidemiological patterns when studied, genetic studies have suggested that these EBV- associated transformations were characterized generally by low level of virus gene expression with only the latent virus proteins (LVPs) upregulated in both tumors and LCLs. In this review, we summarize some clinical and epidemiological features of EBV- associated tumors. We also discuss how EBV latent genes may lead to oncogenesis in the different clinical malignancie
The Epstein-Barr Virus (EBV)-Encoded Protein Kinase, EBV-PK, but Not the Thymidine Kinase (EBV-TK), Is Required for Ganciclovir and Acyclovir Inhibition of Lytic Viral Production
Ganciclovir (GCV) and acyclovir (ACV) are guanine nucleoside analogues that inhibit lytic herpesvirus replication. GCV and ACV must be monophosphorylated by virally encoded enzymes to be converted into nucleotides and incorporated into viral DNA. However, whether GCV and/or ACV phosphorylation in Epstein-Barr virus (EBV)-infected cells is mediated primarily by the EBV-encoded protein kinase (EBV-PK), the EBV-encoded thymidine kinase (EBV-TK), or both is controversial. To examine this question, we constructed EBV mutants containing stop codons in either the EBV-PK or EBV-TK open reading frame and selected for stable 293T clones latently infected with wild-type EBV or each of the mutant viruses. Cells were induced to the lytic form of viral replication with a BZLF1 expression vector in the presence and absence of various doses of GCV and ACV, and infectious viral titers were determined by a green Raji cell assay. As expected, virus production in wild-type EBV-infected 293T cells was inhibited by both GCV (50% inhibitory concentration [IC50] = 1.5 μM) and ACV (IC50 = 4.1 μM). However, the EBV-PK mutant (which replicates as well as the wild-type (WT) virus in 293T cells) was resistant to both GCV (IC50 = 19.6 μM) and ACV (IC50 = 36.4 μM). Expression of the EBV-PK protein in trans restored GCV and ACV sensitivity in cells infected with the PK mutant virus. In contrast, in 293T cells infected with the TK mutant virus, viral replication remained sensitive to both GCV (IC50 = 1.2 μM) and ACV (IC50 = 2.8 μM), although susceptibility to the thymine nucleoside analogue, bromodeoxyuridine, was reduced. Thus, EBV-PK but not EBV-TK mediates ACV and GCV susceptibilities
Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7.
Following occupancy of the T cell receptor by antigen, T cell proliferation and lymphokine production are determined by a second costimulatory signal delivered by a ligand expressed on antigen presenting cells. The human B cell activation antigen B7, which is expressed on antigen presenting cells including activated B cells and gamma-interferon treated monocytes, has been shown to deliver such a costimulatory signal upon attachment to its ligand on T cells, CD28. We have cloned and sequenced the murine homologue of the human B7 gene. The predicted murine protein has 44% amino acid identity with human B7. The greatest similarity is in the Ig-V and Ig-C like domains. Murine B7 mRNA was detected in murine hematopoietic cells of B cell but not T cell origin. Cells transfected with murine B7 provided a costimulatory signal to human CD28+ T lymphocytes. These results demonstrate the costimulatory activity of murine B7 and provide evidence that the ligand attachment site is conserved between the two species
A chimeric EBV gp350/220-based VLP replicates the virion B-cell attachment mechanism and elicits long-lasting neutralizing antibodies in mice
Epstein-Barr virus (EBV), an oncogenic gammaherpesvirus, causes acute infectious mononucleosis (AIM) and is linked to the development of several human malignancies. There is an urgent need for a vaccine that is safe, prevents infection and/or limits disease. Unique among human herpesviruses, glycoprotein (gp)350/220, which initiates EBV attachment to susceptible host cells, is the major ligand on the EBV envelope and is highly conserved. Interaction between gp350/220 and complement receptor type 2 (CR2)/CD21 and/or (CR1)/CD35 on B-cells is required for infection. Potent antibody responses to gp350/220 occur in animal models and humans. Thus, gp350/220 provides an attractive candidate for prophylactic subunit vaccine development. However, in a recent Phase II clinical trial immunization with soluble recombinant gp350 reduced the incidence of AIM, but did not prevent infection. Despite various attempts to produce an EBV vaccine, no vaccine is licensed. Herein we describe a sub-unit vaccine against EBV based on a novel Newcastle disease virus (NDV)-virus-like particle (VLP) platform consisting of EBVgp350/220 ectodomain fused to NDV-fusion (F) protein. The chimeric protein EBVgp350/220-F is incorporated into the membrane of a VLP composed of the NDV matrix and nucleoprotein. The particles resemble native EBV in diameter and shape and bind CD21 and CD35. Immunization of BALB/c mice with EBVgp350/220-F VLPs elicited strong, long-lasting neutralizing antibody responses when assessed in vitro. This chimeric VLP is predicted to provide a superior safety profile as it is efficiently produced in Chinese hamster ovary (CHO) cells using a platform devoid of human nucleic acid and EBV-transforming genes
Structure of the Extracellular Portion of CD46 Provides Insights into Its Interactions with Complement Proteins and Pathogens
The human membrane cofactor protein (MCP, CD46) is a central component of the innate immune system. CD46 protects autologous cells from complement attack by binding to complement proteins C3b and C4b and serving as a cofactor for their cleavage. Recent data show that CD46 also plays a role in mediating acquired immune responses, and in triggering autophagy. In addition to these physiologic functions, a significant number of pathogens, including select adenoviruses, measles virus, human herpes virus 6 (HHV-6), Streptococci, and Neisseria, use CD46 as a cell attachment receptor. We have determined the crystal structure of the extracellular region of CD46 in complex with the human adenovirus type 11 fiber knob. Extracellular CD46 comprises four short consensus repeats (SCR1-SCR4) that form an elongated structure resembling a hockey stick, with a long shaft and a short blade. Domains SCR1, SCR2 and SCR3 are arranged in a nearly linear fashion. Unexpectedly, however, the structure reveals a profound bend between domains SCR3 and SCR4, which has implications for the interactions with ligands as well as the orientation of the protein at the cell surface. This bend can be attributed to an insertion of five hydrophobic residues in a SCR3 surface loop. Residues in this loop have been implicated in interactions with complement, indicating that the bend participates in binding to C3b and C4b. The structure provides an accurate framework for mapping all known ligand binding sites onto the surface of CD46, thereby advancing an understanding of how CD46 acts as a receptor for pathogens and physiologic ligands of the immune system
Mouth breathing children have cephalometric patterns similar to those of adult patients with obstructive sleep apnea syndrome
Comparative structure and evolution of murine CR2. The homolog of the human C3d/EBV receptor (CD21).
Abstract
The complete nucleotide sequence of murine complement receptor type 2 (CR2) was determined from two overlapping cDNA clones derived from a lambda gt11 library of late pre-B cell origin. Comparison of the predicted sequence of the 1014 amino acid murine homolog with that of human CR2 revealed marked evolutionary conservation. The murine molecule was 65% identical to human CR2 overall, lacking a single repetitive sequence variably present in man. The 15 approximately 60-75 amino acid short consensus repeats (SCR) that constitute the entire extracellular domain of murine CR2 were 53 to 81% identical to and could be directly aligned with the human protein. As reported, the cytoplasmic tail shared 79% amino acid identity with human CR2, whereas that of the transmembrane was only 33%. Murine CR2 contained 16 potential N-linked glycosylation sites of which 6 were conserved, 4 altered, and 6 lost during human evolution. The hydropathicity profile of the two molecules was nearly colinear with some variation in the N-terminal region of the first repeat, as well as within the sixth and twelfth repeats. RNA blot analysis revealed a approximately 4.0 to 5.0 kb message in murine B lymphocytes, which was absent in T lymphocytes (thymus and spleen), liver, brain, lung, kidney, and heart. A method was devised to more precisely compare the repeat structures. An identity matrix analysis suggests that human ancestral CR2 evolved before divergence of the rodent and primate branches of the evolutionary tree through a series of predictable gene duplications, possibly giving rise to the precursor of human CR1 and murine CRY. The marked structural similarity between the human and murine receptors suggests functional conservation as well.</jats:p
The Molecular Basis of Lytic Induction Therapy in Relation to Gamma herpesvirus (KSHV, EBV)-Associated, AIDS-Related Tumors
- …
