301 research outputs found

    A flow equation approach to periodically driven quantum systems

    Full text link
    We present a theoretical method to generate a highly accurate {\em time-independent} Hamiltonian governing the finite-time behavior of a time-periodic system. The method exploits infinitesimal unitary transformation steps, from which renormalization group-like flow equations are derived to produce the effective Hamiltonian. Our tractable method has a range of validity reaching into frequency regimes that are usually inaccessible via high frequency ω\omega expansions in the parameter h/ωh/\omega, where hh is the upper limit for the strength of local interactions. We demonstrate our approach on both interacting and non-interacting many-body Hamiltonians where it offers an improvement over the more well-known Magnus expansion and other high frequency expansions. For the interacting models, we compare our approximate results to those found via exact diagonalization. While the approximation generally performs better globally than other high frequency approximations, the improvement is especially pronounced in the regime of lower frequencies and strong external driving. This regime is of special interest because of its proximity to the resonant regime where the effect of a periodic drive is the most dramatic. Our results open a new route towards identifying novel non-equilibrium regimes and behaviors in driven quantum many-particle systems.Comment: 25 pages, 14 figure

    Floquet topological transitions in extended Kane-Mele models with disorder

    Get PDF
    In this work we use Floquet theory to theoretically study the influence of circularly polarized light on disordered two-dimensional models exhibiting topological transitions. We find circularly polarized light can induce a topological transition in extended Kane-Mele models that include additional hopping terms and on-site disorder. The topological transitions are understood from the Floquet-Bloch band structure of the clean system at high symmetry points in the first Brillouin zone. The light modifies the equilibrium band structure of the clean system in such a way that the smallest gap in the Brillouin zone can be shifted from the MM points to the K(K)K(K') points, the Γ\Gamma point, or even other lower symmetry points. The movement of the minimal gap point through the Brillouin zone as a function of laser parameters is explained in the high frequency regime through the Magnus expansion. In the disordered model, we compute the Bott index to reveal topological phases and transitions. The disorder can induce transitions from topologically non-trivial states to trivial states or vice versa, both examples of Floquet topological Anderson transitions. As a result of the movement of the minimal gap point through the Brillouin zone as a function of laser parameters, the nature of the topological phases and transitions is laser-parameter dependent--a contrasting behavior to the Kane-Mele model.Comment: 10 pages, 7 figure

    Reinforcement learning in populations of spiking neurons

    Get PDF
    Population coding is widely regarded as a key mechanism for achieving reliable behavioral responses in the face of neuronal variability. But in standard reinforcement learning a flip-side becomes apparent. Learning slows down with increasing population size since the global reinforcement becomes less and less related to the performance of any single neuron. We show that, in contrast, learning speeds up with increasing population size if feedback about the populationresponse modulates synaptic plasticity in addition to global reinforcement. The two feedback signals (reinforcement and population-response signal) can be encoded by ambient neurotransmitter concentrations which vary slowly, yielding a fully online plasticity rule where the learning of a stimulus is interleaved with the processing of the subsequent one. The assumption of a single additional feedback mechanism therefore reconciles biological plausibility with efficient learning

    Many-body theory of the quantum mirage

    Full text link
    In recent scanning tunneling microscopy experiments, confinement in an elliptical corral has been used to project the Kondo effect from one focus to the other one. I solve the Anderson model at arbitrary temperatures, for an impurity hybridized with eigenstates of an elliptical corral, each of which has a resonant level width delta. This width is crucial. If delta < 20 meV, the Kondo peak disappears, while if delta > 80 meV, the mirage disappears. For particular conditions, a stronger mirage with the impurity out of the foci is predicted.Comment: 5 pages, 5 figures. Some clarifications of the method added, and a reference included to show that the hybridization of the impurity with bulk states can be neglecte

    Singular responses of spin-incoherent Luttinger liquids

    Full text link
    When a local potential changes abruptly in time, an electron gas shifts to a new state which at long times is orthogonal to the one in the absence of the local potential. This is known as Anderson's orthogonality catastrophe and it is relevant for the so-called X-ray edge or Fermi edge singularity, and for tunneling into an interacting one dimensional system of fermions. It often happens that the finite frequency response of the photon absorption or the tunneling density of states exhibits a singular behavior as a function of frequency: (ωthωωth)αΘ(ωωth)(\frac{\omega_{\rm th}}{\omega-\omega_{\rm th}})^\alpha\Theta(\omega-\omega_{\rm th}) where ωth\omega_{\rm th} is a threshold frequency and α\alpha is an exponent characterizing the singular response. In this paper singular responses of spin-incoherent Luttinger liquids are reviewed. Such responses most often do not fall into the familiar form above, but instead typically exhibit logarithmic corrections and display a much higher universality in terms of the microscopic interactions in the theory. Specific predictions are made, the current experimental situation is summarized, and key outstanding theoretical issues related to spin-incoherent Luttinger liquids are highlighted.Comment: 21 pages, 3 figures. Invited Topical Review Articl

    Floquet Hofstadter Butterfly on the Kagome and Triangular Lattices

    Get PDF
    In this work we use Floquet theory to theoretically study the influence of monochromatic circularly and linearly polarized light on the Hofstadter butterfly---induced by a uniform perpendicular magnetic field--for both the kagome and triangular lattices. In the absence of the laser light, the butterfly has fractal structure with inversion symmetry about magnetic flux ϕ=1/4\phi=1/4, and reflection symmetry about ϕ=1/2\phi=1/2. As the system is exposed to an external laser, we find circularly polarized light deforms the butterfly by breaking the mirror symmetry at flux ϕ=1/2\phi=1/2. By contrast, linearly polarized light deforms the original butterfly while preserving the mirror symmetry at flux ϕ=1/2\phi=1/2. We find the inversion symmetry is always preserved for both linear and circular polarized light. For linearly polarized light, the Hofstadter butterfly depends on the polarization direction. Further, we study the effect of the laser on the Chern number of lowest band in the off-resonance regime (laser frequency is larger than the bandwidth). For circularly polarized light, we find that low laser intensity will not change the Chern number, but beyond a critical intensity the Chern number will change. For linearly polarized light, the Chern number depends on the polarization direction. Our work highlights the generic features expected for the periodically driven Hofstadter problem on different lattices.Comment: 13 pages, 11 figure
    corecore