48 research outputs found

    The Mitochondrial Genome of the Legume Vigna radiata and the Analysis of Recombination across Short Mitochondrial Repeats

    Get PDF
    The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38–297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes

    Unicircular structure of the Brassica hirta mitochondrial genome

    Full text link
    Restriction mapping studies reveal that the mitochondrial genome of white mustard ( Brassica hirta ) exists in the form of a single circular 208 kb chromosome. The B. hirta genome has only one copy of the two sequences which, in several related Brassica species, are duplicated and undergo intramolecular recombination. This first report of a plant mitochondrial DNA that does not exist in a multipartite structure indicates that high frequency intramolecular recombination is not an obligatory feature of plant mitochondrial genomes. Heterologous filter hybridizatios reveal that the mitochondrial genomes of B. hirta and B. campestris have diverged radically in sequence arrangement, as the result of approximately 10 large inversions. At the same time, however, the two genomes are similar in size, sequence content, and primary sequence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46962/1/294_2004_Article_BF00384620.pd

    Rearrangement, amplification, and assortment of mitochondrial DNA molecules in cultured cells of Brassica campestris

    Full text link
    We compared Brassica campestris mitochondrial and chloroplast DNAs from whole plants and from a 2-year-old cell culture. No differences were observed in the chloroplast DNAs (cpDNAs), whereas the culture mitochondrial DNA (mtDNA) was extensively altered. Hybridization analysis revealed that the alterations are due entirely to rearrangement. At least two inversions and one large duplication are found in the culture mtDNA. The duplication element is shown to have the usual properties of a plant mtDNA high frequency “recombination repeat”. The culture mtDNA exists as a complex heterogeneous population of rearranged and unrearranged molecules. Some of the culture-associated rearranged molecules are present in low levels in native plant tissue and appear to have sorted out and amplified in the culture. Other mtDNA rearrangements may have occurred de novo. In addition to alterations of the main mitochondrial genome, an 11.3 kb linear mtDNA plasmid present in whole plants is absent from the culture. Contrary to findings in cultured cells of other plants, small circular mtDNA molecules were not detected in the B. campestris cell culture.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46005/1/122_2004_Article_BF00292310.pd

    An active ribonucleotide reductase from Arabidopsis thaliana cloning, expression and characterization of the large subunit.

    No full text
    International audienceIn all living organisms, deoxyribonucleotides, the DNA precursors, are produced by reduction of the corresponding ribonucleotides catalyzed by ribonucleotide reductase. In mammals as in Escherichia coli, the enzyme consists of two proteins. Protein R1 is the proper reductase as it contains, in the substrate binding site, the reducing active cysteine pair. Protein R2 provides a catalytically essential organic radical. Here we report the cloning, expression, purification and characterization of protein R1 from Arabidopsis thaliana. Expression in E. coli was made possible by coexpression of tRNAArg4 which is required for the utilization of AGA and AGG as codons for arginines. Protein R1 shows extensive similarities with protein R1 from mammals: (a) it shows 69% amino-acid sequence identity to human and mouse R1 protein; (b) it is active during CDP reduction by dithiothreitol, in the presence of protein R2 [Sauge-Merle, S., Laulhère, J.-P., Coves, J., Ménage, S., Le Pape, L. & Fontecave, M. (1997) J. Biol. Inorg. Chem. 2, 586-594]; (c) activity is stimulated by thioredoxin and ATP and is inhibited by dATP, showing that as in the mammalian enzyme, the plant ribonucleotide reductase seems to be allosterically regulated by positive (ATP) and negative (dATP) effectors

    A biological nanofoam: The wall of coniferous bisaccate pollen.

    Get PDF
    International audienceThe outer layer of the pollen grain, the exine, plays a key role in the survival of terrestrial plant life. However, the exine structure in different groups of plants remains enigmatic. Here, modern and fossil coniferous bisaccate pollen were examined to investigate the detailed three-dimensional structure and properties of the pollen wall. X-ray nanotomography and volume electron microscopy are used to provide high-resolution imagery, revealing a solid nanofoam structure. Atomic force microscopy measurements were used to compare the pollen wall with other natural and synthetic foams and to demonstrate that the mechanical properties of the wall in this type of pollen are retained for millions of years in fossil specimens. The microscopic structure of this robust biological material has potential applications in materials sciences and also contributes to our understanding of the evolutionary success of conifers and other plants over geological time

    An Oil Hyper-Accumulator Mutant Highlights Peroxisomal ATP Import as a Regulatory Step for Fatty Acid Metabolism in Aurantiochytrium limacinum

    No full text
    International audienceThraustochytrids are marine protists that naturally accumulate triacylglycerol with long chains of polyunsaturated fatty acids, such as ω3-docosahexaenoic acid (DHA). They represent a sustainable response to the increasing demand for these "essential" fatty acids (FAs). Following an attempt to transform a strain of Aurantiochytrium limacinum, we serendipitously isolated a clone that did not incorporate any recombinant DNA but contained two to three times more DHA than the original strain. Metabolic analyses indicated a deficit in FA catabolism. However, whole transcriptome analysis did not show down-regulation of genes involved in FA catabolism. Genome sequencing revealed extensive DNA deletion in one allele encoding a putative peroxisomal adenylate transporter. Phylogenetic analyses and yeast complementation experiments confirmed the gene as a peroxisomal adenylate nucleotide transporter (AlANT1), homologous to yeast ScANT1 and plant peroxisomal adenylate nucleotide carrier AtPNC genes. In yeast and plants, a deletion of the peroxisomal adenylate transporter inhibits FA breakdown and induces FA accumulation, a phenotype similar to that described here. In response to this metabolic event, several compensatory mechanisms were observed. In particular, genes involved in FA biosynthesis were upregulated, also contributing to the high FA accumulation. These results support AlANT1 as a promising target for enhancing DHA production in Thraustochytrids
    corecore