108 research outputs found

    Studies to Investigate Epigenetic Factors in Acute Myeloid Leukaemia

    Get PDF
    Acute myeloid leukaemia (AML) is a heterogeneous disease with numerous recurrent cytogenetic and molecular abnormalities. This heterogeneity is reflected in the variation in clinical outcome seen in patients. This disparity in outcome is also seen within groups of patients who have the same mutation or no known molecular abnormalities. To investigate whether the DNA methylation profile of samples can provide prognostic information, the methylome of forty cytogenetically normal AML samples that were wild-type for NPM1 and FLT3 was analysed, 20 were from patients with chemosensitive disease and 20 with chemoresistant disease. Unsupervised cluster analysis revealed the DNA methylation profile to be most associated with underlying CEBPA genotype hence a CEBPA signature was created using the 25 CpG sites that differed the most between wild-type (n=30) and classic CEBPADM (double mutant) samples (n=10). Two follow-up cohorts were analysed, validating the initial signature in differentiating classic CEBPADM samples from wild-type. CEBPASM (single mutant) samples had profiles more similar to the CEBPAWT (wild-type) signature. Non-classic CEBPADM samples with at least one mutation leading to loss of function of the C terminal were associated with a CEBPA mutant methylation profile. Methylation of the CEBPA promoter was not associated with a classic CEBPADM methylation profile in eight of the nine cases exhibiting hypermethylation. The ASXL1 gene, known to have a role in histone regulation, was screened in 371 patients using denaturing HPLC. The overall mutation rate was 9%. Overall survival was significantly lower in patients with an ASXL1 mutation, however the mutation was associated with secondary disease and older age, and thus in multivariate analysis mutations in ASX L1 lost significance. These studies indicate that epigenetic factors are closely linked to other prognostic traits such as age or underlying molecular status of the AML. Given this association, DNA methylation could play an important role in assessing the significance of different types of mutations

    Do U.S. Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis.

    Get PDF
    Despite numerous studies, uncertainty remains about how water quality indicators can best be used in the regulation of recreational water. We conducted a systematic review of this topic with the goal of quantifying the association between microbial indicators of recreational water quality and gastrointestinal (GI) illness. A secondary goal was to evaluate the potential for GI illness below current guidelines. We screened 976 potentially relevant studies and from these identified 27 studies. From the latter, we determined summary relative risks for GI illness in relation to water quality indicator density. Our results support the use of enterococci in marine water at U.S. Environmental Protection Agency guideline levels. In fresh water, (Italic)Escherichia(/Italic) coli was a more consistent predictor of GI illness than are enterococci and other bacterial indicators. A log (base 10) unit increase in enterococci was associated with a 1.34 [95% confidence intervals (CI), 1.00-1.75] increase in relative risk in marine waters, and a log (base 10) unit increase in E. coli was associated with a 2.12 (95% CI, 0.925-4.85) increase in relative risk in fresh water. Indicators of viral contamination were strong predictors of GI illness in both fresh and marine environments. Significant heterogeneity was noted among the studies. In our analysis of heterogeneity, studies that used a nonswimming control group, studies that focused on children, and studies of athletic or other recreational events found elevated relative risks. Future studies should focus on the ability of new, more rapid and specific microbial methods to predict health effects, and estimating the risks of recreational water exposure among susceptible persons

    Simpson's Paradox and the Impact of Different DNMT3A Mutations on Outcome in Younger Adults With Acute Myeloid Leukemia

    Get PDF
    To evaluate the impact of DNMT3A mutations on outcome in younger patients with cytogenetic intermediate-risk acute myeloid leukemia

    Effect of surgical experience and spine subspecialty on the reliability of the AO Spine Upper Cervical Injury Classification System.

    Get PDF
    OBJECTIVE The objective of this paper was to determine the interobserver reliability and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on surgeon experience ( 20 years) and surgical subspecialty (orthopedic spine surgery, neurosurgery, and "other" surgery). METHODS A total of 11,601 assessments of upper cervical spine injuries were evaluated based on the AO Spine Upper Cervical Injury Classification System. Reliability and reproducibility scores were obtained twice, with a 3-week time interval. Descriptive statistics were utilized to examine the percentage of accurately classified injuries, and Pearson's chi-square or Fisher's exact test was used to screen for potentially relevant differences between study participants. Kappa coefficients (κ) determined the interobserver reliability and intraobserver reproducibility. RESULTS The intraobserver reproducibility was substantial for surgeon experience level ( 20 years: 0.70) and surgical subspecialty (orthopedic spine: 0.71 vs neurosurgery: 0.69 vs other: 0.68). Furthermore, the interobserver reliability was substantial for all surgical experience groups on assessment 1 ( 20 years: 0.62), and only surgeons with > 20 years of experience did not have substantial reliability on assessment 2 ( 20 years: 0.59). Orthopedic spine surgeons and neurosurgeons had substantial intraobserver reproducibility on both assessment 1 (0.64 vs 0.63) and assessment 2 (0.62 vs 0.63), while other surgeons had moderate reliability on assessment 1 (0.43) and fair reliability on assessment 2 (0.36). CONCLUSIONS The international reliability and reproducibility scores for the AO Spine Upper Cervical Injury Classification System demonstrated substantial intraobserver reproducibility and interobserver reliability regardless of surgical experience and spine subspecialty. These results support the global application of this classification system

    The AO spine upper cervical injury classification system: Do work setting or trauma center affiliation affect classification accuracy or reliability?

    Get PDF
    PURPOSE To assess the accuracy and reliability of the AO Spine Upper Cervical Injury Classification System based on a surgeons' work setting and trauma center affiliation. METHODS A total of 275 AO Spine members participated in a validation of 25 upper cervical spine injuries, which were evaluated by computed tomography (CT) scans. Each participant was grouped based on their work setting (academic, hospital-employed, or private practice) and their trauma center affiliation (Level I, Level II or III, and Level IV or no trauma center). The classification accuracy was calculated as percent of correct classifications, while interobserver reliability, and intraobserver reproducibility were evaluated based on Fleiss' Kappa coefficient. RESULTS The overall classification accuracy for surgeons affiliated with a level I trauma center was significantly greater than participants affiliated with a level II/III center or a level IV/no trauma center on assessment one (p1<0.0001) and two (p2 = 0.0003). On both assessments, surgeons affiliated with a level I or a level II/III trauma center were significantly more accurate at identifying IIIB injury types (p1 = 0.0007; p2 = 0.0064). Academic surgeons and hospital employed surgeons were significantly more likely to correctly classify type IIIB injuries on assessment one (p1 = 0.0146) and two (p2 = 0.0015). When evaluating classification reliability, the largest differences between work settings and trauma center affiliations was identified in type IIIB injuries. CONCLUSION Type B injuries are the most difficult injury type to correctly classify. They are classified with greater reliability and classification accuracy when evaluated by academic surgeons, hospital-employed surgeons, and surgeons associated with higher-level trauma centers (I or II/III)

    Global Validation of the AO Spine Upper Cervical Injury Classification.

    Get PDF
    STUDY DESIGN Global Cross Sectional Survey. OBJECTIVE To determine the classification accuracy, interobserver reliability, and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on an international group of AO Spine members. SUMMARY OF BACKGROUND DATA Previous upper cervical spine injury classifications have primarily been descriptive without incorporating a hierarchical injury progression within the classification system. Further, upper cervical spine injury classifications have focused on distinct anatomical segments within the upper cervical spine. The AO Spine Upper Cervical Injury Classification System incorporates all injuries of the upper cervical spine into a single classification system focused on a hierarchical progression from isolated bony injuries (type A) to fracture dislocations (type C). METHODS A total of 275 AO Spine members participated in a validation aimed at classifying 25 upper cervical spine injuries via computed tomography (CT) scans according to the AO Spine Upper Cervical Classification System. The validation occurred on two separate occasions, three weeks apart. Descriptive statistics for percent agreement with the gold-standard were calculated and Pearson's chi square test evaluated significance between validation groups. Kappa coefficients (ƙ) determined the interobserver reliability and intraobserver reproducibility. RESULTS The accuracy of AO Spine members to appropriately classify upper cervical spine injuries was 79.7% on assessment 1 (AS1) and 78.7% on assessment 2 (AS2). The overall intraobserver reproducibility was substantial (ƙ=0.70), while the overall interobserver reliability for AS1 and AS2 was substantial (ƙ=0.63 and ƙ=0.61, respectively). Injury location had higher interobserver reliability (AS1: ƙ = 0.85 and AS2: ƙ=0.83) than the injury type (AS1: ƙ=0.59 and AS2: 0.57) on both assessments. CONCLUSION The global validation of the AO Spine Upper Cervical Injury Classification System demonstrated substantial interobserver agreement and intraobserver reproducibility. These results support the universal applicability of the AO Spine Upper Cervical Injury Classification System

    Global Validation of the AO Spine Upper Cervical Injury Classification: Geographic Region Affects Reliability and Reproducibility.

    Get PDF
    STUDY DESIGN Global Survey. OBJECTIVE To determine the accuracy, interobserver reliability, and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on surgeons' AO Spine region of practice (Africa, Asia, Central/South America, Europe, Middle East, and North America). METHODS A total of 275 AO Spine members assessed 25 upper cervical spine injuries and classified them according to the AO Spine Upper Cervical Injury Classification System. Reliability, reproducibility, and accuracy scores were obtained over two assessments administered at three-week intervals. Kappa coefficients (ƙ) determined the interobserver reliability and intraobserver reproducibility. RESULTS On both assessments, participants from Europe and North America had the highest classification accuracy, while participants from Africa and Central/South America had the lowest accuracy (P < .0001). Participants from Africa (assessment 1 (AS1):ƙ = .487; AS2:0.491), Central/South America (AS1:ƙ = .513; AS2:0.511), and the Middle East (AS1:0.591; AS2: .599) achieved moderate reliability, while participants from North America (AS1:ƙ = .673; AS2:0.648) and Europe (AS1:ƙ = .682; AS2:0.681) achieved substantial reliability. Asian participants obtained substantial reliability on AS1 (ƙ = .632), but moderate reliability on AS2 (ƙ = .566). Although there was a large effect size, the low number of participants in certain regions did not provide adequate certainty that AO regions affected the likelihood of participants having excellent reproducibility (P = .342). CONCLUSIONS The AO Spine Upper Cervical Injury Classification System can be applied with high accuracy, interobserver reliability, and intraobserver reproducibility. However, lower classification accuracy and reliability were found in regions of Africa and Central/South America, especially for severe atlas injuries (IIB and IIC) and atypical hangman's type fractures (IIIB injuries)

    Asc-Dependent and Independent Mechanisms Contribute to Restriction of Legionella Pneumophila Infection in Murine Macrophages

    Get PDF
    The apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc) is an adaptor molecule that mediates inflammatory and apoptotic signals. Legionella pneumophila is an intracellular bacterium and the causative agent of Legionnaire's pneumonia. L. pneumophila is able to cause pneumonia in immuno-compromised humans but not in most inbred mice. Murine macrophages that lack the ability to activate caspase-1, such as caspase-1−/− and Nlrc4−/− allow L. pneumophila infection. This permissiveness is attributed mainly to the lack of active caspase-1 and the absence of its down stream substrates such as caspase-7. However, the role of Asc in control of L. pneumophila infection in mice is unclear. Here we show that caspase-1 is moderately activated in Asc−/− macrophages and that this limited activation is required and sufficient to restrict L. pneumophila growth. Moreover, Asc-independent activation of caspase-1 requires bacterial flagellin and is mainly detected in cellular extracts but not in culture supernatants. We also demonstrate that the depletion of Asc from permissive macrophages enhances bacterial growth by promoting L. pneumophila-mediated activation of the NF-κB pathway and decreasing caspase-3 activation. Taken together, our data demonstrate that L. pneumophila infection in murine macrophages is controlled by several mechanisms: Asc-independent activation of caspase-1 and Asc-dependent regulation of NF-κB and caspase-3 activation

    AO Spine Upper Cervical Injury Classification System: A Description and Reliability Study.

    Get PDF
    BACKGROUND CONTEXT Prior upper cervical spine injury classification systems have focused on injuries to the craniocervical junction (CCJ), atlas, and dens independently. However, no previous system has classified upper cervical spine injuries using a comprehensive system incorporating all injuries from the occiput to the C2-3 joint. PURPOSE To (1) determine the accuracy of experts at correctly classifying upper cervical spine injuries based on the recently proposed AO Spine Upper Cervical Injury Classification System (2) to determine their interobserver reliability and (3) identify the intraobserver reproducibility of the experts. STUDY DESIGN/SETTING International Multi-Center Survey PATIENT SAMPLE: A survey of international spine surgeons on 29 unique upper cervical spine injuries OUTCOME MEASURES: Classification accuracy, interobserver reliability, intraobserver reproducibility METHODS: Thirteen international AO Spine Knowledge Forum Trauma members participated in two live webinar-based classifications of 29 upper cervical spine injuries presented in random order, four weeks apart. Percent agreement with the gold-standard and kappa coefficients (ƙ) were calculated to determine the interobserver reliability and intraobserver reproducibility. RESULTS Raters demonstrated 80.8% and 82.7% accuracy with identification of the injury classification (combined location and type) on the first and second assessment, respectively. Injury classification intraobserver reproducibility was excellent (mean, [range] ƙ = 0.82 [0.58-1.00]). Excellent interobserver reliability was found for injury location (ƙ = 0.922 and ƙ= 0.912) on both assessments, while injury type was substantial (ƙ=0.689 and 0.699) on both assessments. This correlated to a substantial overall interobserver reliability (ƙ = 0.729 and 0.732). CONCLUSION Early phase validation demonstrated classification of upper cervical spine injuries using the AO Spine Upper Cervical Injury Classification System to be accurate, reliable, and reproducible. Greater than 80% accuracy was detected for injury classification. The intraobserver reproducibility was excellent, while the interobserver reliability was substantial
    corecore