4,374 research outputs found
A wide bandwidth free-electron laser with mode locking using current modulation
A new scheme for mode locking a free-electron laser (FEL) amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept (Thompson and McNeil 2008 Phys. Rev. Lett. 100 203901), based on the energy modulation of electrons, are improved, including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked FEL and a self-amplified spontaneous emission FEL. Illustrative examples using a hypothetical mode-locked FEL amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated
The Electrosphere of Macroscopic "Quark Nuclei": A Source for Diffuse MeV Emissions from Dark Matter
Using a Thomas-Fermi model, we calculate the structure of the electrosphere
of the quark antimatter nuggets postulated to comprise much of the dark matter.
This provides a single self-consistent density profile from ultrarelativistic
densities to the nonrelativistic Boltzmann regime that use to present
microscopically justified calculations of several properties of the nuggets,
including their net charge, and the ratio of MeV to 511 keV emissions from
electron annihilation. We find that the calculated parameters agree with
previous phenomenological estimates based on the observational supposition that
the nuggets are a source of several unexplained diffuse emissions from the
Galaxy. As no phenomenological parameters are required to describe these
observations, the calculation provides another nontrivial verification of the
dark-matter proposal. The structure of the electrosphere is quite general and
will also be valid at the surface of strange-quark stars, should they exist.Comment: 20 Pages, REVTeX4.
WMAP Haze: Directly Observing Dark Matter?
In this paper we show that dark matter in the form of dense matter/antimatter
nuggets could provide a natural and unified explanation for several distinct
bands of diffuse radiation from the core of the Galaxy spanning over 12 orders
of magnitude in frequency. We fix all of the phenomenological properties of
this model by matching to x-ray observations in the keV band, and then
calculate the unambiguously predicted thermal emission in the microwave band,
at frequencies smaller by 10 orders of magnitude. Remarkably, the intensity and
spectrum of the emitted thermal radiation are consistent with--and could
entirely explain--the so-called "WMAP haze": a diffuse microwave excess
observed from the core of our Galaxy by the Wilkinson Microwave Anisotropy
Probe (WMAP). This provides another strong constraint of our proposal, and a
remarkable nontrivial validation. If correct, our proposal identifies the
nature of the dark matter, explains baryogenesis, and provides a means to
directly probe the matter distribution in our Galaxy by analyzing several
different types of diffuse emissions.Comment: 16 pages, REVTeX4. Updated to correspond with published version:
includes additional appendices discussing finite-size effect
Exploring Zeptosecond Quantum Equilibration Dynamics: From Deep-Inelastic to Fusion-Fission Outcomes in Ni+Ni Reactions
Energy dissipative processes play a key role in how quantum many-body systems
dynamically evolve towards equilibrium. In closed quantum systems, such
processes are attributed to the transfer of energy from collective motion to
single-particle degrees of freedom; however, the quantum many-body dynamics of
this evolutionary process are poorly understood. To explore energy dissipative
phenomena and equilibration dynamics in one such system, an experimental
investigation of deep-inelastic and fusion-fission outcomes in the
Ni+Ni reaction has been carried out. Experimental outcomes have
been compared to theoretical predictions using Time Dependent Hartree Fock and
Time Dependent Random Phase Approximation approaches, which respectively
incorporate one-body energy dissipation and fluctuations. Excellent
quantitative agreement has been found between experiment and calculations,
indicating that microscopic models incorporating one-body dissipation and
fluctuations provide a potential tool for exploring dissipation in low-energy
heavy ion collisions.Comment: 11 pages, 9 figures, 1 table, including Supplemental Material -
Version accepted for publication in Physical Review Letter
Capital allocation for credit portfolios with kernel estimators
Determining contributions by sub-portfolios or single exposures to
portfolio-wide economic capital for credit risk is an important risk
measurement task. Often economic capital is measured as Value-at-Risk (VaR) of
the portfolio loss distribution. For many of the credit portfolio risk models
used in practice, the VaR contributions then have to be estimated from Monte
Carlo samples. In the context of a partly continuous loss distribution (i.e.
continuous except for a positive point mass on zero), we investigate how to
combine kernel estimation methods with importance sampling to achieve more
efficient (i.e. less volatile) estimation of VaR contributions.Comment: 22 pages, 12 tables, 1 figure, some amendment
Reduced quasifission competition in fusion reactions forming neutron-rich heavy elements
Measurements of mass-angle distributions (MADs) for Cr + W reactions,
providing a wide range in the neutron-to-proton ratio of the compound system,
(N/Z)CN, have allowed for the dependence of quasifission on the (N/Z)CN to be
determined in a model-independent way. Previous experimental and theoretical
studies had produced conflicting conclusions. The experimental MADs reveal an
increase in contact time and mass evolution of the quasifission fragments with
increasing (N/Z)CN, which is indicative of an increase in the fusion
probability. The experimental results are in agreement with microscopic
time-dependent Hartree-Fock calculations of the quasifission process. The
experimental and theoretical results favor the use of the most neutron-rich
projectiles and targets for the production of heavy and superheavy nuclei.Comment: Accepted to PRC as a Rapid Communicatio
Whole body and splanchnic amino acid metabolism in sheep during an acute endotoxin challenge
Acknowledgements The expertise of A. Graham Calder and Susan Anderson for the various stable isotope analyses is gratefully recognised. Ngaire Dennison is also thanked for her surgical expertise with the trans-splanchnic tissue catheter preparations. This study was supported by funds provided to the Rowett Institute of Nutrition and Health, University of Aberdeen and Biomathematics and Statistics Scotland by the Rural and Environment Science and Analytical Services Division of the Scottish Government. S. O. H. was a recipient of a FoRST (NZ) award to study abroad.Peer reviewedPostprin
Tetraamine Me6TREN induced monomerization of alkali metal borohydrides and aluminohydrides
Monomeric 1:1 complexes of MEH4 (M, E = Li, B, 1; Na, B, 2; Li, Al, 3; Na, Al, 4) and the tripodal tetradentate ligand (Me2NCH2CH2)3N (Me6TREN) have been prepared in good yields by refluxing in THF and allowing the solutions to cool slowly. X-ray diffraction studies show that the BH4 group binds to either Li or Na via three hydride bridges while the AlH4 group connects to Li via a single hydride bridge. Surprisingly, Me6TREN·LiAlH4 represents the first monomeric contacted ion pair LiAlH4 derivative to be structurally characterized. In every case the tetraamine coordinates via all four of its Lewis basic nitrogen atoms. A similar protocol using the alkyl-rich borohydride MBEt3H also gives monomeric species (M = Li, 5; Na, 6). All complexes have been characterized in solution by multinuclear (1H, 7Li, 11B, 13C and 27Al, where appropriate) NMR spectroscopy which reveals excellent textbook examples of 1J coupling between B/Al and H in the cases of complexes 1-4 and between B and C in the cases of complexes 5 and 6
- …