87,357 research outputs found
SU(3)-Goodman-de la Harpe-Jones subfactors and the realisation of SU(3) modular invariants
We complete the realisation by braided subfactors, announced by Ocneanu, of
all SU(3)-modular invariant partition functions previously classified by
Gannon.Comment: 47 pages, minor changes, to appear in Reviews in Mathematical Physic
Trace-scaling automorphisms of certain stable AF algebras
Trace scaling automorphisms of stable AF algebras with dimension group
totally ordered are outer conjugate if the scaling factors are the same (not
equal to one). This is an adaptation of a similar result for the AFD type
II_infty factor by Connes and extends the previous result for stable UHF
algebras.Comment: 12 pages, late
Modular Invariants from Subfactors: Type I Coupling Matrices and Intermediate Subfactors
A braided subfactor determines a coupling matrix Z which commutes with the S-
and T-matrices arising from the braiding. Such a coupling matrix is not
necessarily of "type I", i.e. in general it does not have a block-diagonal
structure which can be reinterpreted as the diagonal coupling matrix with
respect to a suitable extension. We show that there are always two intermediate
subfactors which correspond to left and right maximal extensions and which
determine "parent" coupling matrices Z^\pm of type I. Moreover it is shown that
if the intermediate subfactors coincide, so that Z^+=Z^-, then Z is related to
Z^+ by an automorphism of the extended fusion rules. The intertwining relations
of chiral branching coefficients between original and extended S- and
T-matrices are also clarified. None of our results depends on non-degeneracy of
the braiding, i.e. the S- and T-matrices need not be modular. Examples from
SO(n) current algebra models illustrate that the parents can be different,
Z^+\neq Z^-, and that Z need not be related to a type I invariant by such an
automorphism.Comment: 25 pages, latex, a new Lemma 6.2 added to complete an argument in the
proof of the following lemma, minor changes otherwis
Modular invariants and subfactors
In this lecture we explain the intimate relationship between modular
invariants in conformal field theory and braided subfactors in operator
algebras. Our analysis is based on an approach to modular invariants using
braided sector induction ("-induction") arising from the treatment of
conformal field theory in the Doplicher-Haag-Roberts framework. Many properties
of modular invariants which have so far been noticed empirically and considered
mysterious can be rigorously derived in a very general setting in the subfactor
context. For example, the connection between modular invariants and graphs (cf.
the A-D-E classification for ) finds a natural explanation and
interpretation. We try to give an overview on the current state of affairs
concerning the expected equivalence between the classifications of braided
subfactors and modular invariant two-dimensional conformal field theories.Comment: 25 pages, AMS LaTeX, epic, eepic, doc-class fic-1.cl
Modular invariants from subfactors
In these lectures we explain the intimate relationship between modular
invariants in conformal field theory and braided subfactors in operator
algebras. A subfactor with a braiding determines a matrix which is obtained
as a coupling matrix comparing two kinds of braided sector induction
("alpha-induction"). It has non-negative integer entries, is normalized and
commutes with the S- and T-matrices arising from the braiding. Thus it is a
physical modular invariant in the usual sense of rational conformal field
theory. The algebraic treatment of conformal field theory models, e.g.
models, produces subfactors which realize their known modular
invariants. Several properties of modular invariants have so far been noticed
empirically and considered mysterious such as their intimate relationship to
graphs, as for example the A-D-E classification for . In the subfactor
context these properties can be rigorously derived in a very general setting.
Moreover the fusion rule isomorphism for maximally extended chiral algebras due
to Moore-Seiberg, Dijkgraaf-Verlinde finds a clear and very general proof and
interpretation through intermediate subfactors, not even referring to
modularity of and . Finally we give an overview on the current state of
affairs concerning the relations between the classifications of braided
subfactors and two-dimensional conformal field theories. We demonstrate in
particular how to realize twisted (type II) descendant modular invariants of
conformal inclusions from subfactors and illustrate the method by new examples.Comment: Typos corrected and a few minor changes, 37 pages, AMS LaTeX, epic,
eepic, doc-class conm-p-l.cl
Coarsening of a Class of Driven Striped Structures
The coarsening process in a class of driven systems exhibiting striped
structures is studied. The dynamics is governed by the motion of the driven
interfaces between the stripes. When two interfaces meet they coalesce thus
giving rise to a coarsening process in which l(t), the average width of a
stripe, grows with time. This is a generalization of the reaction-diffusion
process A + A -> A to the case of extended coalescing objects, namely, the
interfaces. Scaling arguments which relate the coarsening process to the
evolution of a single driven interface are given, yielding growth laws for
l(t), for both short and long time. We introduce a simple microscopic model for
this process. Numerical simulations of the model confirm the scaling picture
and growth laws. The results are compared to the case where the stripes are not
driven and different growth laws arise
Modeling non-stationary, non-axisymmetric heat patterns in DIII-D tokamak
Non-axisymmetric stationary magnetic perturbations lead to the formation of
homoclinic tangles near the divertor magnetic saddle in tokamak discharges.
These tangles intersect the divertor plates in static helical structures that
delimit the regions reached by open magnetic field lines reaching the plasma
column and leading the charged particles to the strike surfaces by parallel
transport. In this article we introduce a non-axisymmetric rotating magnetic
perturbation to model the time development of the three-dimensional magnetic
field of a single-null DIII-D tokamak discharge developing a rotating tearing
mode. The stable and unstable manifolds of the asymmetric magnetic saddle are
calculated through an adaptive method providing the manifold cuts at a given
poloidal plane and the strike surfaces. For the modeled shot, the experimental
heat pattern and its time development are well described by the rotating
unstable manifold, indicating the emergence of homoclinic lobes in a rotating
frame due to the plasma instabilities. In the model it is assumed that the
magnetic field is created by a stationary axisymmetric plasma current and a set
of rotating internal helical filamentary currents. The currents in the
filaments are adjusted to match the waveforms of the magnetic probes at the
mid-plane and the rotating magnetic field is introduced as a perturbation to
the axisymmetric field obtained from a Grad-Shafranov equilibrium
reconstruction code
Smilansky's model of irreversible quantum graphs, II: the point spectrum
In the model suggested by Smilansky one studies an operator describing the
interaction between a quantum graph and a system of K one-dimensional
oscillators attached at different points of the graph. This paper is a
continuation of our investigation of the case K>1. For the sake of simplicity
we consider K=2, but our argument applies to the general situation. In this
second paper we apply the variational approach to the study of the point
spectrum.Comment: 18 page
Modular Invariants, Graphs and -Induction for Nets of Subfactors I
We analyze the induction and restriction of sectors for nets of subfactors
defined by Longo and Rehren. Picking a local subfactor we derive a formula
which specifies the structure of the induced sectors in terms of the original
DHR sectors of the smaller net and canonical endomorphisms. We also obtain a
reciprocity formula for induction and restriction of sectors, and we prove a
certain homomorphism property of the induction mapping.
Developing further some ideas of F. Xu we will apply this theory in a
forthcoming paper to nets of subfactors arising from conformal field theory, in
particular those coming from conformal embeddings or orbifold inclusions of
SU(n) WZW models. This will provide a better understanding of the labeling of
modular invariants by certain graphs, in particular of the A-D-E classification
of SU(2) modular invariants.Comment: 36 pages, latex, several corrections, a strong additivity assumption
had to be adde
- …
