75,981 research outputs found
Opportunistic use of a wool-like artificial material as lining of Tit (Paridae) nests
The lining material is a key element of bird nests primarily serving as insulation for the adult, eggs and/or chicks but collection of such material will have an energetic cost. This study investigated the nest building effort of four species of tit (Paridae) in an English wood by determining the use of colored, wool-like artificial nest lining material over the period 2000-2010. The distances that birds carried the material from source to nest was recorded for each nest as an indirect measure of the energetic cost of collection of nest material by individual birds. Birds did not always use nest material from the nearest source to their nest and some birds collected material from 2, 3 or 4 well-separated sources. There was no detectable color preference in choice of material and few birds would travel more than 200 m to gather the material. Use of the material appeared to depend on the species. Within defined areas around material dispensers not all individual Great Tits (Parus major) used the artificial material and, for all species examined, the proportion of birds using the material declined with increasing distance between source and nest. Use of artificial material suggested that selection of nest materials was probably opportunistic but also reflected the preference of these species for a wool-like nest-lining
Recent results in Euclidean dynamical triangulations
We study a formulation of lattice gravity defined via Euclidean dynamical
triangulations (EDT). After fine-tuning a non-trivial local measure term we
find evidence that four-dimensional, semi-classical geometries are recovered at
long distance scales in the continuum limit. Furthermore, we find that the
spectral dimension at short distance scales is consistent with 3/2, a value
that is also observed in the causal dynamical triangulation (CDT) approach to
quantum gravity.Comment: 7 pages, 3 figures. Proceedings for the 3rd conference of the Polish
society on relativit
Lattice Quantum Gravity and Asymptotic Safety
We study the nonperturbative formulation of quantum gravity defined via
Euclidean dynamical triangulations (EDT) in an attempt to make contact with
Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary
in order to recover semiclassical behavior. Such a fine-tuning is generally
associated with the breaking of a target symmetry by the lattice regulator; in
this case we argue that the target symmetry is the general coordinate
invariance of the theory. After introducing and fine-tuning a nontrivial local
measure term, we find no barrier to taking a continuum limit, and we find
evidence that four-dimensional, semiclassical geometries are recovered at long
distance scales in the continuum limit. We also find that the spectral
dimension at short distance scales is consistent with 3/2, a value that could
resolve the tension between asymptotic safety and the holographic entropy
scaling of black holes. We argue that the number of relevant couplings in the
continuum theory is one, once symmetry breaking by the lattice regulator is
accounted for. Such a theory is maximally predictive, with no adjustable
parameters. The cosmological constant in Planck units is the only relevant
parameter, which serves to set the lattice scale. The cosmological constant in
Planck units is of order 1 in the ultraviolet and undergoes renormalization
group running to small values in the infrared. If these findings hold up under
further scrutiny, the lattice may provide a nonperturbative definition of a
renormalizable quantum field theory of general relativity with no adjustable
parameters and a cosmological constant that is naturally small in the infrared.Comment: 69 pages, 25 figures. Revised discussion of target symmetry
throughout paper. Numerical results unchanged and main conclusions largely
unchanged. Added references and corrected typos. Conforms with version
published in Phys. Rev.
Dust-acoustic waves and stability in the permeating dusty plasma: II. Power-law distributions
The dust-acoustic waves and their stability driven by a flowing dusty plasma
when it cross through a static (target) dusty plasma (the so-called permeating
dusty plasma) are investigated when the components of the dusty plasma obey the
power-law q-distributions in nonextensive statistics. The frequency, the growth
rate and the stability condition of the dust-acoustic waves are derived under
this physical situation, which express the effects of the nonextensivity as
well as the flowing dusty plasma velocity on the dust-acoustic waves in this
dusty plasma. The numerical results illustrate some new characteristics of the
dust-acoustic waves, which are different from those in the permeating dusty
plasma when the plasma components are the Maxwellian distribution. In addition,
we show that the flowing dusty plasma velocity has a significant effect on the
dust-acoustic waves in the permeating dusty plasma with the power-law
q-distribution.Comment: 20 pages, 10 figures, 41 reference
- …
