89 research outputs found

    Nonaqueous Dispersions as Vehicles for Polymer Coatings

    No full text

    Regulation of protein synthesis during spore germination in Dictyostelium discoideum.

    Full text link

    Extensive homology between the herpes simplex virus type 2 glycoprotein F gene and the herpes simplex virus type 1 glycoprotein C gene

    Full text link
    The region of the herpes simplex virus type 2 (HSV-2) genome which maps colinearly with the HSV-1 glycoprotein C (gC) gene has been cloned, and the DNA sequence of a 2.29-kilobase region has been determined. Contained within this sequence is a major open reading frame of 479 amino acids. The carboxyterminal three-fourths of the derived HSV-2 protein sequence showed a high degree of sequence homology to the HSV-1 gC amino acid sequence reported by Frink et al. (J. Virol. 45:634-647, 1983). The amino-terminal region of the HSV-2 sequence, however, showed very little sequence homology to HSV-1 gC. In addition, the HSV-1 gC sequence contained 27 amino acids in the amino-terminal region which were missing from the HSV-2 protein. Computer-assisted analysis of the hydrophilic and hydrophobic properties of the derived HSV-2 sequence demonstrated that the protein contained structures characteristic of membrane-bound glycoproteins, including an amino-terminal signal sequence and carboxy-terminal hydrophobic transmembrane domain and charged cytoplasmic anchor. The HSV-2 protein sequence also contained seven putative N-linked glycosylation sites. These data, in conjunction with mapping studies of Para et al. (J. Virol. 45:1223-1227, 1983) and Zezulak and Spear (J. Virol. 49:741-747, 1984), suggest that the protein sequence derived from the HSV-2 genome corresponds to gF, the HSV-2 homolog of HSV-1 gC.</jats:p

    Regulation of protein synthesis during spore germination in Dictyostelium discoideum.

    No full text

    Studies on the mode of oestrogenic inhibition of hepatic synthesis of α2u-globulin and its corresponding messenger ribonucleic acid in rat liver

    Full text link
    1. The possible mechanism of the oestrogenic inhibition of the androgen-dependent synthesis of alpha2u-globulin in rat liver was explored by a correlative study of the amounts of alpha2u-globulin, its corresponding mRNA and circulating testosterone in oestrogen-treated male rats. 2. Daily treatments of mature male rats with oestradiol-17beta (10 microgram/100g body wt.) decreased and ultimately stopped the hepatic synthesis of alpha2u-globulin as determined by both hepatic and urinary concentrations of the protein. The oestrogen-mediated decrease in the hepatic synthesis of alpha2u-globulin was correlated with a decrease in the mRNA for this protein. 3. Withdrawal of oestrogen resulted in the recovery of alpha2u-globulin synthesis and an increase in mRNA for alpha2u-globulin. 4. At higher doses of oestradiol-17beta (50 microgram/100g body wt.), synthesis of alpha2u-globulin was totally suppressed. In addition, this treatment resulted in an extended period of androgen-insensitivity during which treatment with androgens induced synthesis of neither alpha2u-globulin nor its corresponding mtrna. 5. it is concluded that the oestrogenic inhibition of alpha2u-globulin synthesis is mediated by an oestrogen-dependent decrease in the hepatic content of translatable mRNA for alpha2u-globulin.</jats:p
    corecore