66 research outputs found

    Simulations of Photon Detection in SiPM Number-Resolving Detectors

    Full text link
    Number-resolving single photon detectors are essential for the implementation of numerous innovative quantum information schemes. While several number-discriminating techniques have been previously presented, the Silicon Photo-Multiplier (SiPM) detector is a promising candidate due its rather simple integration in optical setups. On the other hand, the photon statistics obtained with the SiPM detector suffer from inaccuracies due to inherent distortions which depend on the geometrical properties of the SiPM. We have simulated the detection process in a SiPM detector and studied these distortions. We use results from the simulation in order to interpret experimental data and study the limits in which available models prevail

    Mutations at the Subunit Interface of Yeast Proliferating Cell Nuclear Antigen Reveal a Versatile Regulatory Domain

    Get PDF
    Acknowledgments We thank Szilvia Minorits for technical assistance. I.U. conceived and designed the project and wrote the manuscript. All authors participated in designing and performing the experiments, and analyzing the results. The authors declare no competing financial interests. This work was also supported by a grant from the National Research, Development and Innovation Office GINOP-2.3.2-15-2016-00001. Funding: This work was supported by Hungarian Science Foundation Grant OTKA 109521 and National Research Development and Innovation Office GINOP-2.3.2-15-2016-00001. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Direct observation of the degree of correlations using photon-number-resolving detectors

    Full text link
    Optical parametric down-conversion is a common source for the generation of non-classical correlated photonic states. Using a parametric down-conversion source and photon-number resolving detectors, we measure the two-mode photon-number distribution of up to 10 photons. By changing the heralded collection efficiency, we control the level of correlations between the two modes. Clear evidence for photon-number correlations are presented despite detector imperfections such as low detection efficiency and other distorting effects. Two criteria, derived directly from the raw data, are shown to be good measures for the degree of correlation. Additionally, using a fitting technique, we find a connection between the measured photon-number distribution and the degree of correlation of the reconstructed original two-mode state. These observations are only possible as a result of the detection of high photon number events.Comment: 5 pages, 5 figure
    corecore