40 research outputs found

    Altered expression of genes implicated in xylan biosynthesis affects penetration resistance against powdery mildew

    Get PDF
    Heteroxylan has recently been identified as an important component of papillae, which are formed during powdery mildew infection of barley leaves. Deposition of heteroxylan near the sites of attempted fungal penetration in the epidermal cell wall is believed to enhance the physical resistance to the fungal penetration peg and hence to improve pre-invasion resistance. Several glycosyltransferase (GT) families are implicated in the assembly of heteroxylan in the plant cell wall, and are likely to work together in a multi-enzyme complex. Members of key GT families reported to be involved in heteroxylan biosynthesis are up-regulated in the epidermal layer of barley leaves during powdery mildew infection. Modulation of their expression leads to altered susceptibility levels, suggesting that these genes are important for penetration resistance. The highest level of resistance was achieved when a GT43 gene was co-expressed with a GT47 candidate gene, both of which have been predicted to be involved in xylan backbone biosynthesis. Altering the expression level of several candidate heteroxylan synthesis genes can significantly alter disease susceptibility. This is predicted to occur through changes in the amount and structure of heteroxylan in barley papillae.Jamil Chowdhury, Stefanie LĂŒck, Jeyaraman Rajaraman, Dimitar Douchkov, Neil J. Shirley, Julian G. Schwerdt, Patrick Schweizer, Geoffrey B. Fincher, Rachel A. Burton and Alan Littl

    Genome-Wide Identification and Mapping of NBS-Encoding Resistance Genes in Solanum tuberosum Group Phureja

    Get PDF
    The majority of disease resistance (R) genes identified to date in plants encode a nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domain containing protein. Additional domains such as coiled-coil (CC) and TOLL/interleukin-1 receptor (TIR) domains can also be present. In the recently sequenced Solanum tuberosum group phureja genome we used HMM models and manual curation to annotate 435 NBS-encoding R gene homologs and 142 NBS-derived genes that lack the NBS domain. Highly similar homologs for most previously documented Solanaceae R genes were identified. A surprising ∌41% (179) of the 435 NBS-encoding genes are pseudogenes primarily caused by premature stop codons or frameshift mutations. Alignment of 81.80% of the 577 homologs to S. tuberosum group phureja pseudomolecules revealed non-random distribution of the R-genes; 362 of 470 genes were found in high density clusters on 11 chromosomes

    Convergent evidence for a role of WIR1 proteins during the interaction of barley with the powdery mildew fungus Blumeria graminis

    No full text
    Pathogen attack triggers a multifaceted defence response in plants that includes the accumulation of pathogenesis-related proteins and their corresponding transcripts. One of these transcripts encodes for WIR1, a small glycine- and proline-rich protein of unknown function that appears to be specific to grass species. Here we describe members of the HvWIR1 multigene family of barley with respect to phylogenetic relationship, transcript regulation, co-localization with quantitative trait loci for resistance to the barley powdery mildew fungus Blumeria graminis (DC.) E.O. Speer f.sp. hordei, the association of single nucleotide polymorphisms or gene haplotypes with resistance, as well as phenotypic effects of gene silencing by RNAi. HvWIR1 is encoded by a multigene family of moderate complexity that splits up into two major clades, one of those being also represented by previously described cDNA sequences from wheat. All analysed WIR1 transcripts accumulated in response to powdery mildew attack in leaves and all mapped WIR1 genes were associated with quantitative trait loci for resistance to B. graminis. Moreover, single nucleotide polymorphisms or haplotypes of WIR1 members were associated with quantitative resistance of barley to B. graminis, and transient WIR1 gene silencing affected the interaction of epidermal cells with the pathogen. The presented data provide convergent evidence for a role of the HvWIR1a gene and possibly other family members, during the interaction of barley with B. gramini

    Down-regulation of the glucan synthase-like 6 gene (HvGsl6) in barley leads to decreased callose accumulation and increased cell wall penetration by Blumeria graminis f. sp. hordei

    No full text
    The recent characterization of the polysaccharide composition of papillae deposited at the barley cell wall during infection by the powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh), has provided new targets for the generation of enhanced disease resistance. The role of callose in papilla-based penetration resistance of crop species is largely unknown because the genes involved in the observed callose accumulation have not been identified unequivocally. We have employed both comparative and functional genomics approaches to identify the functional orthologue of AtGsl5 in the barley genome. HvGsl6 (the barley glucan synthase-like 6 gene), which has the highest sequence identity to AtGsl5, is the only Bgh-induced gene among the HvGsls examined in this study. Through double-stranded RNA interference (dsRNAi)-mediated silencing of HvGsl6, we have shown that the down-regulation of HvGsl6 is associated with a lower accumulation of papillary and wound callose and a higher susceptibility to penetration of the papillae by Bgh, compared with control lines. The results indicate that the HvGsl6 gene is a functional orthologue of AtGsl5 and is involved in papillary callose accumulation in barley. The increased susceptibility of HvGsl6 dsRNAi transgenic lines to infection indicates that callose positively contributes to the barley fungal penetration resistance mechanism.Jamil Chowdhury, Michael S. Schober, Neil J. Shirley, Rohan R. Singh, Andrew K. Jacobs, Dimitar Douchkov, Patrick Schweizer, Geoffrey B. Fincher, Rachel A. Burton and Alan Littl

    The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus

    No full text
    Cell walls and cellular turgor pressure shape and suspend the bodies of all vascular plants. In response to attack by fungal and oomycete pathogens, which usually breach their host's cell walls by mechanical force or by secreting lytic enzymes, plants often form local cell wall appositions (papillae) as an important first line of defence. The involvement of cell wall biosynthetic enzymes in the formation of these papillae is still poorly understood, especially in cereal crops. To investigate the role in plant defence of a candidate gene from barley (Hordeum vulgare) encoding cellulose synthase-like D2 (HvCslD2), we generated transgenic barley plants in which HvCslD2 was silenced through RNA interference (RNAi). The transgenic plants showed no growth defects but their papillae were more successfully penetrated by host-adapted, virulent as well as avirulent nonhost isolates of the powdery mildew fungus Blumeria graminis. Papilla penetration was associated with lower contents of cellulose in epidermal cell walls and increased digestion by fungal cell wall degrading enzymes. The results suggest that HvCslD2-mediated cell wall changes in the epidermal layer represent an important defence reaction both for nonhost and for quantitative host resistance against nonadapted wheat and host-adapted barley powdery mildew pathogens, respectively.Dimitar Douchkov, Stefanie Lueck, Goetz Hensel, Jochen Kumlehn, Jeyaraman Rajaraman, Annika Johrde, Monika S. Doblin, Cherie T. Beahan, Michaela Kopischke, Ren, e Fuchs, Volker Lipka, Rients E. Niks, Vincent Bulone, Jamil Chowdhury, Alan Little, Rachel A. Burton, Antony Bacic, Geoffrey B. Fincher and Patrick Schweize
    corecore