69 research outputs found
Cardiac tamponade and paroxysmal third-degree atrioventricular block revealing a primary cardiac non-Hodgkin large B-cell lymphoma of the right ventricle: a case report
<p>Abstract</p> <p>Introduction</p> <p>Primary cardiac lymphoma is rare.</p> <p>Case Presentation</p> <p>We report the case of a 64-year-old non-immunodeficient Caucasian man, with cardiac tamponade and paroxysmal third-degree atrioventricular block. Echocardiography revealed the presence of a large pericardial effusion with signs of tamponade and a right ventricular mass was suspected. Scanner investigations clarified the sites, extension and anatomic details of myocardial and pericardial infiltration. Surgical resection was performed due to the rapid impairment of his cardiac function. Analysis of the pericardial fluid and histology confirmed the diagnosis of non-Hodgkin large B-cell lymphoma. He was treated with chemotherapy.</p> <p>Conclusion</p> <p>The prognosis remains poor for this type of tumor due to delays in diagnosis and the importance of the site of disease.</p
Keys for architectural history research in the digital era
This handbook gathers a selection of texts by the speakers at the Training School “Architectural Research in the Digital Era” (Ghent, 2-6 April 2013) and the workshop “GIS, data visualization an open community” (Paris, 27-28 January 2014). The aims of these two events organised in the framework of the COST ISO904 Action European architecture beyond Europe: Sharing Research and Knowledge on Dissemination Processes, Historical Data and Material Legacy (19th-20th centuries), was to familiarize the participants, architectural historians with a variety of aspects related to conducting research in a digital era: Architectural history research in the digital era Copyrights; Standards, metadata, interoperability and sustainability; Data visualisation; Creating a digital research environment, GIS and Open communities
The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production
The KM3NeT Collaboration is building an underwater neutrino observatory at
the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both
composed of a three-dimensional array of light detectors, known as digital
optical modules. Each digital optical module contains a set of 31 three inch
photomultiplier tubes distributed over the surface of a 0.44 m diameter
pressure-resistant glass sphere. The module includes also calibration
instruments and electronics for power, readout and data acquisition. The power
board was developed to supply power to all the elements of the digital optical
module. The design of the power board began in 2013, and several prototypes
were produced and tested. After an exhaustive validation process in various
laboratories within the KM3NeT Collaboration, a mass production batch began,
resulting in the construction of over 1200 power boards so far. These boards
were integrated in the digital optical modules that have already been produced
and deployed, 828 until October 2023. In 2017, an upgrade of the power board,
to increase reliability and efficiency, was initiated. After the validation of
a pre-production series, a production batch of 800 upgraded boards is currently
underway. This paper describes the design, architecture, upgrade, validation,
and production of the power board, including the reliability studies and tests
conducted to ensure the safe operation at the bottom of the Mediterranean Sea
throughout the observatory's lifespa
Multispacer typing of Rickettsia isolates from humans and ticks in Tunisia revealing new genotypes
BACKGROUND: Rickettsioses are important remerging vector born infections. In Tunisia, many species have been described in humans and vectors. Genotyping is important for tracking pathogen movement between hosts and vectors. In this study, we characterized Rickettsia species detected in patients and vectors using multispacer typing (MST), proposed by Founier et al. and based on three intergenic spacers (dksA-xerC, rmpE- tRNA(fMet), mppA-pruC) sequencing. METHODS: Our study included 25 patients hospitalized during 2009. Ticks and fleas were collected in the vicinity of confirmed cases. Serology was performed on serum samples by microimmunofluorescence using Rickettsia conorii and Rickettsia typhi antigens. To detect and identify Rickettsia species, PCR targeting ompA, ompB and gltA genes followed by sequencing was performed on 18 obtained skin biopsies and on all collected vectors. Rickettsia positive samples were further characterized using primers targeting three intergenic spacers (dksA-xerC, rmpE- tRNA(fMet) and mppA-purC). RESULTS: A rickettsial infection was confirmed in 15 cases (60%). Serology was positive in 13 cases (52%). PCR detected Rickettsia DNA in four biopsies (16%) allowing the identification of R. conorii subsp israelensis in three cases and R. conorii subsp conorii in one case. Among 380 collected ticks, nine presented positive PCR (2.4%) allowing the identification of six R. conorii subsp israelensis, two R. massiliae and one R. conorii subsp conorii. Among 322 collected fleas, only one was positive for R. felis. R. conorii subsp israelensis strains detected in humans and vectors clustered together and showed a new MST genotype. Similarly, R. conorii subsp conorii strains detected in a skin biopsy and a tick were genetically related and presented a new MST genotype. CONCLUSIONS: New Rickettsia spotted fever strain genotypes were found in Tunisia. Isolates detected in humans and vectors were genetically homogenous despite location differences in their original isolation suggesting epidemiologic circulation of these strains
Cardiopulmonary responses during the cooling and the extracorporeal life support rewarming phases in a porcine model of accidental deep hypothermic cardiac arrest
Functional diversity and co-operativity between subclonal populations of paediatric glioblastoma and diffuse intrinsic pontine glioma cells
The failure to develop effective therapies for pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG) is in part due to their intrinsic heterogeneity. We aimed to quantitatively assess the extent to which this was present in these tumors through subclonal genomic analyses and to determine whether distinct tumor subpopulations may interact to promote tumorigenesis by generating subclonal patient-derived models in vitro and in vivo. Analysis of 142 sequenced tumors revealed multiple tumor subclones, spatially and temporally coexisting in a stable manner as observed by multiple sampling strategies. We isolated genotypically and phenotypically distinct subpopulations that we propose cooperate to enhance tumorigenicity and resistance to therapy. Inactivating mutations in the H4K20 histone methyltransferase KMT5B (SUV420H1), present in <1% of cells, abrogate DNA repair and confer increased invasion and migration on neighboring cells, in vitro and in vivo, through chemokine signaling and modulation of integrins. These data indicate that even rare tumor subpopulations may exert profound effects on tumorigenesis as a whole and may represent a new avenue for therapeutic development. Unraveling the mechanisms of subclonal diversity and communication in pGBM and DIPG will be an important step toward overcoming barriers to effective treatments
Origin of the Extreme Longwave Chlorophyll Form of the Photosystem I Trimeric Complex of Spirulina
IMPACT OF INTERMITTENT IRRIGATION AND NITROGEN FERTILIZATION ON YIELD OF RICE (Orayza sativa L.) AND SOME WATER RELATIONS
Funktionelle Organisation des Photosystems I: Picosekunden-aufgeloeste Fluoreszenzuntersuchungen
Available from TIB Hannover: RN 9087(115) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
- …
