39 research outputs found

    The Effect of Ventricular Assist Devices on Post-Transplant Mortality An Analysis of the United Network for Organ Sharing Thoracic Registry

    Get PDF
    ObjectivesThis study sought to determine the relationship between pre-transplant ventricular assist device (VAD) support and mortality after heart transplantation.BackgroundIncreasingly, VADs are being used to bridge patients to heart transplantation. The effect of these devices on post-transplant mortality is unclear.MethodsPatients 18 years or older who underwent first-time, single-organ heart transplantation in the U.S. between 1995 and 2004 were included in the analyses. This study compared 1,433 patients bridged with intracorporeal and 448 patients bridged with extracorporeal VADs with 9,455 United Network for Organ Sharing status 1 patients not bridged with a VAD with respect to post-transplant mortality. Because the proportional hazards assumption was not met, hazard ratios (HRs) for different time periods were estimated.ResultsIntracorporeal VADs were associated with an HR of 1.20 (95% confidence interval [CI]: 1.02 to 1.43; p = 0.03) for mortality in the first 6 months after transplant and an HR of 1.99 (95% CI: 1.44 to 2.75; p < 0.0001) beyond 5 years. Between 6 months and 5 years, the HRs were not significantly different from 1. Extracorporeal VADs were associated with an HR of 1.91 (95% CI: 1.53 to 2.37; p < 0.0001) for mortality in the first 6 months and an HR of 2.93 (95% CI: 1.19 to 7.25; p = 0.02) beyond 5 years. The HRs were not significantly different from 1 between 6 months and 5 years, except for an HR of 0.23 (95% CI: 0.06 to 0.91; p = 0.04) between 24 and 36 months.ConclusionsExtracorporeal VADs are associated with higher mortality within 6 months and again beyond 5 years after transplantation. Intracorporeal VADs are associated with a small increase in mortality in the first 6 months and a clinically significant increase in mortality beyond 5 years. These data do not provide evidence supporting VAD implantation in stable United Network for Organ Sharing status I patients awaiting heart transplantation

    N-methyl-β-carboline alkaloids: structure-dependent photosensitizing properties and localization in subcellular domains

    Get PDF
    N-methyl-Beta-carboline (bC) alkaloids, including normelinonine F and melinonine F, have been found in a vast range of living species playing different biological, biomedical and/or pharmacological roles. Despite this, molecular bases of the mechanisms through which these alkaloids would exert their effect still remain unknown. Fundamental aspects including the photosensitizing properties and intracellular internalization of a selected group of N-methyl-bC alkaloids were investigated herein. Data reveal that methylation of the bC main ring enhances its photosensitizing properties either by increasing its binding affinity with DNA as biomolecular target and/or by increasing its oxidation potential, in a structure dependent manner. As a general rule, N(9)-substituted bCs showed the highest photosensitizing efficiency. With the exception of 2-methyl-harminium, all the N-methyl-bCs investigated herein induce a similar DNA photodamage profile, dominated largely by oxidized purines. This fact represents a distinctive behavior when comparing with N-unsubstituted-bCs. On the other hand, although all the investigated compounds might accumulate mainly into the mitochondria of HeLa cells, methylation provides a distinctive dynamic pattern for mitochondrial uptake. While rapid (passive) diffusion is most probably reponsible for the prompt uptake/release of neutral bCs, an active transport appears to mediate the (reatively slow) uptake of the quaternary cationic bCs. This might be a consequence of a distinctive subcellular localization (mitochondrial membrane and/or matrix) or interaction with intracellular components. Biomedical and biotechnological implications are also discussed herein.Fil: Denofrio, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Rasse Suriani, Federico Ariel Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Paredes, Jose M.. Universidad de Granada. Facultad de Farmacia. Departamento de Fisicoquimica.; EspañaFil: Fassetta, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Crovetto, Luis. Universidad de Granada. Facultad de Farmacia. Departamento de Fisicoquimica.; EspañaFil: Giron, Maria D.. Universidad de Granada. Facultad de Farmacia.; EspañaFil: Salto, Rafael. Universidad de Granada. Facultad de Farmacia.; EspañaFil: Epe, Bernd. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Cabrerizo, Franco Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    N-Methyl-β-carboline alkaloids: structure-dependent photosensitizing properties and localization in subcellular domains

    Get PDF
    N-Methyl-β-carboline (βC) alkaloids, including normelinonine F (1b) and melinonine F (2b), have been found in a vast range of living species playing different biological, biomedical and/or pharmacological roles. Despite this, molecular bases of the mechanisms through which these alkaloids would exert their effect still remain unknown. Fundamental aspects including the photosensitizing properties and intracellular internalization of a selected group of N-methyl-βC alkaloids were investigated herein. Data reveal that methylation of the βC main ring enhances its photosensitizing properties either by increasing its binding affinity with DNA as a biomolecular target and/or by increasing its oxidation potential, in a structure-dependent manner. As a general rule, N(9)-substituted βCs showed the highest photosensitizing efficiency. With the exception of 2-methyl-harminium, all the N-methyl-βCs investigated herein induce a similar DNA photodamage profile, dominated largely by oxidized purines. This fact represents a distinctive behavior when comparing with N-unsubstituted-βCs. On the other hand, although all the investigated compounds might accumulate mainly into the mitochondria of HeLa cells, methylation provides a distinctive dynamic pattern for mitochondrial uptake. While rapid (passive) diffusion is most probably reponsible for the prompt uptake/release of neutral βCs, an active transport appears to mediate the (reatively slow) uptake of the quaternary cationic βCs. This might be a consequence of a distinctive subcellular localization (mitochondrial membrane and/or matrix) or interaction with intracellular components. Biomedical and biotechnological implications are also discussed herein.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Light-induced full aromatization and hydroxylation of 7-methoxy-1-methyl-3,4-dihydro-2H-pyrido[3,4-b]indole alkaloid : Oxygen partial pressure as a key modulator of the photoproducts distribution

    Get PDF
    Full-aromatic and partially hydrogenated β-carboline (βC) derivatives constitute a group of alkaloids widely distributed in a great variety of living systems. In plants and bacteria, tetrahydro- βCs are the primary product of the Pictet-Spengler enzymatically catalyzed condensation. Tetrahydro-βC skeleton is further modified giving rise to the formation of a vast set of derivatives including dihydro- and full-aromatic βCs. However, in most of the cases, the later processes still remain unclear and other sources, such as photo-triggered reactions, deserve to be explored. In this context, the photophysic and photochemistry of 7-methoxy-1-methyl-3,4-dihydro-2H-pyrido[3,4- b]indole or harmaline (Hlina) in aqueous solution is reported herein. UV-visible absorption and fluorescence emission spectroscopy coupled with multivariate data analysis (PARAFAC), HPLC and HRESI-MS techniques were used for both quantitative and qualitative analysis. The formation singlet oxygen and hydrogen peroxide reactive oxygen species (ROS) was quantified and their role together with the influence of pH and oxygen partial pressure on the photochemical degradation of HlinaH+ was assessed. We report herein the first study on photochemical full-aromatization of a dihydro-βC derivative. These results can shed some light on the βCs biosynthesis and role in living systems.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Digoxin is Associated with Higher Quality of Life in LVAD Recipients.

    Full text link
    Purpose: To examine the effects of digoxin on functional capacity and quality of life as measured by the 6-minute walk test (6MWT) and Kansas City Cardiomyopathy Questionnaire Overall Summary Score (KCCQ) in patients receiving the Heartware HVAD system. Methods: HVAD patients who remained alive on device support at 6 months from the ADVANCE + CAP, ENDURANCE + Supplemental trials were eligible. Pts were separated by digoxin use: those who were discharged from the index hospitalization on digoxin and remained on digoxin through 6 months (DIG, n=161) and those discharged from the index hospitalization not on digoxin and remained off through 6 months (NO DIG, n=533). Differences in 6MWT and KCCQ were compared between groups at baseline, 6, and 12 months. Adverse events were compared between groups from baseline through 6 months. Results: Baseline characteristics were similar: Mean age was 59 years and 23% of patients were female. Serum creatinine was 0.9mg/dL ± 0.7. History of atrial fibrillation was more common in the DIG group (57.8% vs 42.9%, p = 0.001). Compared to the NO DIG group, the DIG group had greater improvements in KCCQ score at 6 months (+ 36.8 vs. + 27.7, p=0.0001) and at 12 months (+35.9 vs +29.5, p=0.01). 6MWT was similar between groups (Table 1). Device malfunction within 6 months was more common in the DIG group [18% (0.42 EPPY) vs 9.2% (0.21 EPPY), p = 0.002]. Rates of other adverse events including 6-month re-hospitalization [47.8% (2.21 EPPY) vs 42.9% (1.8 EPPY), p=0.10] were similar. Conclusion: LVAD recipients maintained on chronic digoxin for at least 6 mo had greater improvements in QOL scores compared to those not treated with digoxin despite having higher rates of device malfunction and similar improvements in functional capacity. Prospective study is warranted

    Photosensitizing properties and subcellular localisation of 3,4-dihydro-β-carbolines harmaline and harmalol

    Full text link
    Harmaline (1) and harmalol (2) represent two 3,4-dihydro-β-carboline (DHβCs) most frequently reported in a vast number of living systems. Fundamental aspects including the photosensitizing properties, cellular uptake, as well as the cyto- and phototoxicity of 1 and 2 were investigated herein. The molecular basis underlying the investigated processes are elucidated. Data reveal that both alkaloids show a distinctive pattern of extracellular DNA photodamage. Compound 1 induces a DNA photodamage profile dominated by oxidised purines and sites of base loss (AP sites), whereas 2 mostly induces single-strand breaks (SSBs) in addition to a small extent of purine oxidative damage. In both cases, DNA oxidative damage would occur through type I mechanism. In addition, a concerted hydrolytic attack is suggested as an extra mechanism accounting for the SSBs formation photoinduced by 2. Subcellular internalisation, cyto- and phototoxicity of 1 and 2 and the corresponding full-aromatic derivatives harmine (3) and harmol (4) also showed quite distinctive patterns in a structure-dependent manner. These results are discussed in the framework of the potential biological, biomedical and/or pharmacological roles reported for these alkaloids. Graphical abstract: [Figure not available: see fulltext.] The subtle structural difference (i.e., the exchange of a methoxy group for a hydroxyl substituent at C(7)) between harmaline and harmalol, gives rise to distinctive photosensitizing and subcellular localisation patterns.Fil: Denofrio, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Paredes, Jose M.. Universidad de Granada; EspañaFil: Yañuk, Juan Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Giron, Maria D.. Universidad de Granada; EspañaFil: Salto, Rafael. Universidad de Granada; EspañaFil: Talavera, Eva M.. Universidad de Granada; EspañaFil: Crovetto, Luis. Universidad de Granada; EspañaFil: Cabrerizo, Franco Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentin
    corecore