47,076 research outputs found

    Two-dimensional Fourier-transform Spectroscopy of Potassium Vapor

    Full text link
    Optical two-dimensional Fourier-transformed (2DFT) spectroscopy is used to study the coherent optical response of potassium vapor in a thin transmission cell. Rephasing and non-rephasing spectra of the D1 and D2 transitions are obtained and compared to numerical simulations. Calculations using the optical Bloch equations gives very good agreement with the experimental peak strengths and line shapes. Non-radiative Raman-like coherences are isolated using a different 2DFT projection. Density-dependent measurements show distortion of 2DFT spectra due to pulse propagation effects

    SN2002bu -- Another SN2008S-like Transient

    Full text link
    We observed SN2002bu in the near-IR with the Hubble Space Telescope, the mid-IR with the Spitzer Space Telescope and in X-rays with Swift 10 years after the explosion. If the faint L_H\sim100 Lsun HST near-IR source at the transient position is the near-IR counterpart of SN2002bu, then the source has dramatically faded between 2004 and 2012, from L\sim10^6.0 Lsun to L\sim10^4.5 Lsun. It is still heavily obscured, tau_V\sim5 in graphitic dust models, with almost all the energy radiated in the mid-IR. The radius of the dust emission is increasing as R\simt^(0.7+/-0.4) and the optical depth is dropping as tau_V\simt^(-1.3+/-0.4). The evolution expected for an expanding shell of material, tau_V\sim1/t^2, is ruled out at approximately 2 sigma while the tau_V\simt^(-0.8) to t^(-1) optical depth scaling for a shock passing through a pre-existing wind is consistent with the data. If the near-IR source is a chance superposition, the present day source can be moderately more luminous, significantly more obscured and evolving more slowly. While we failed to detect X-ray emission, the X-ray flux limits are consistent with the present day emissions being powered by an expanding shock wave. SN2002bu is clearly a member of the SN2008S class of transients, but continued monitoring of the evolution of the spectral energy distribution is needed to conclusively determine the nature of the transient.Comment: Submitted to Ap

    Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220

    Full text link
    Star-forming galaxies produce gamma-rays primarily via pion production, resulting from inelastic collisions between cosmic ray protons and the interstellar medium (ISM). The dense ISM and high star formation rates of luminous and ultra-luminous infrared galaxies (LIRGs and ULIRGs) imply that they should be strong gamma-ray emitters, but so far only two LIRGs have been detected. Theoretical models for their emission depend on the unknown fraction of cosmic ray protons that escape these galaxies before interacting. We analyze Fermi-LAT data for 82 of the brightest IRAS LIRGs and ULIRGs. We examine each system individually and carry out a stacking analysis to constrain their gamma-ray fluxes. We report the detection of the nearest ULIRG Arp 220 (~4.6sigma). We observe a gamma-ray flux (0.8--100 GeV) of 2.4e-10 phot cm^-2 s^-1 with photon index of 2.23 (8.2e10^41 ergs s^-1 at 77 Mpc) We also derive upper limits for the stacked LIRGs and ULIRGs. The gamma-ray luminosity of Arp~220 and the stacked upper limits agree with calorimetric predictions for dense star-forming galaxies. With the detection of Arp 220, we extend the gamma-ray--IR luminosity correlation to the high luminosity regime with log(L_[0.1-100 GeV]) = 1.25log(L_[8-1000]) + 26.7 as well as the gamma-ray--radio continuum luminosity correlation with log(L_[0.1-100 GeV]) = 1.22log(L_[1.4 GHz]) + 13.3. The current survey of Fermi-LAT is on the verge of detecting more LIRGs/ULIRGs in the local universe, and we expect even more detections with deeper Fermi-LAT observations or the next generation of gamma-ray detectors.Comment: 14 single column pages, 4 figures, accepted by ApJ

    Strong GeV Emission Accompanying TeV Blazar H1426+428

    Full text link
    For High frequency BL Lac objects (HBLs) like H1426+428, a significant fraction of their TeV gamma-rays emitted are likely to be absorbed in interactions with the diffuse IR background, yielding e±e^\pm pairs. The resulting e±e^\pm pairs generate one hitherto undiscovered GeV emission by inverse Compton scattering with the cosmic microwave background photons (CMBPs). We study such emission by taking the 1998-2000 CAT data, the reanalyzed 1999 & 2000 HEGRA data and the corresponding intrinsic spectra proposed by Aharonian et al. (2003a). We numerically calculate the scattered photon spectra for different intergalactic magnetic field (IGMF) strengths. If the IGMF is about 1018G10^{-18}{\rm G} or weaker, there comes very strong GeV emission, whose flux is far above the detection sensitivity of the upcoming satellite GLAST! Considered its relatively high redshift (z=0.129z=0.129), the detected GeV emission in turn provides us a valuable chance to calibrate the poor known spectral energy distribution of the intergalactic infrared background, or provides us some reliable constraints on the poorly known IGMF strength.Comment: 5 pages, 1 figure. A&A in Pres
    corecore