21,034 research outputs found

    Security assessment of audience response systems using software defined radios

    Full text link
    Audience response systems, also known as clickers, are used at many academic institutions to offer active learning environments. Since these systems are used to administer graded assignments, and sometimes even exams, it is crucial to assess their security. Our work seeks to exploit and document potential vulnerabilities of clickers. For this purpose, we use software defined radios to perform eavesdropping attacks on an audience response system in production. The results of our study demon- strate that clickers are easily exploitable. We build a prototype and show that it is practically possible to covertly steal answers from a peer or even the entire classroom, with high levels of confidence. As a result of this study, we discourage using clickers for high-stake assessments, unless manufacturers provide proper security protection.http://people.bu.edu/staro/MIT_Conference_Khai.pdfAccepted manuscrip

    Measuring the degree of unitarity for any quantum process

    Full text link
    Quantum processes can be divided into two categories: unitary and non-unitary ones. For a given quantum process, we can define a \textit{degree of the unitarity (DU)} of this process to be the fidelity between it and its closest unitary one. The DU, as an intrinsic property of a given quantum process, is able to quantify the distance between the process and the group of unitary ones, and is closely related to the noise of this quantum process. We derive analytical results of DU for qubit unital channels, and obtain the lower and upper bounds in general. The lower bound is tight for most of quantum processes, and is particularly tight when the corresponding DU is sufficiently large. The upper bound is found to be an indicator for the tightness of the lower bound. Moreover, we study the distribution of DU in random quantum processes with different environments. In particular, The relationship between the DU of any quantum process and the non-markovian behavior of it is also addressed.Comment: 7 pages, 2 figure

    Making Clean Energy with a Kerr Black Hole: a Tokamak Model for Gamma-Ray Bursts

    Full text link
    In this paper we present a model for making clean energy with a Kerr black hole. Consider a Kerr black hole with a dense plasma torus spinning around it. A toroidal electric current flows on the surface of the torus, which generates a poloidal magnetic field outside the torus. On the surface of the tours the magnetic field is parallel to the surface. The closed magnetic field lines winding around the torus compress and confine the plasma in the torus, as in the case of tokamaks. Though it is unclear if such a model is stable, we look into the consequences if the model is stable. If the magnetic field is strong enough, the baryonic contamination from the plasma in the torus is greatly suppressed by the magnetic confinement and a clean magnetosphere of electron-positron pairs is built up around the black hole. Since there are no open magnetic field lines threading the torus and no accretion, the power of the torus is zero. If some magnetic field lines threading the black hole are open and connect with loads, clean energy can be extracted from the Kerr black hole by the Blandford-Znajek mechanism. The model may be relevant to gamma-ray bursts. The energy in the Poynting flux produced by the Blandford-Znajek mechanism is converted into the kinetic energy of the electron-positron pairs in the magnetosphere around the black hole, which generates two oppositely directed jets of electron-positron pairs with super-high bulk Lorentz factors. The jets collide and interact with the interstellar medium, which may produce gamma-ray bursts and the afterglows.Comment: 14 pages, 1 figure, accepted by Ap

    Extracting Energy from a Black Hole through Its Disk

    Full text link
    When some magnetic field lines connect a Kerr black hole with a disk rotating around it, energy and angular momentum are transferred between them. If the black hole rotates faster than the disk, ca/GMH>0.36ca/GM_H>0.36 for a thin Keplerian disk, then energy and angular momentum are extracted from the black hole and transferred to the disk (MHM_H is the mass and aMHa M_H is the angular momentum of the black hole). This way the energy originating in the black hole may be radiated away by the disk. The total amount of energy that can be extracted from the black hole spun down from ca/GMH=0.998ca/GM_H = 0.998 to ca/GMH=0.36ca/GM_H = 0.36 by a thin Keplerian disk is 0.15MHc2\approx 0.15 M_Hc^2. This is larger than 0.09MHc2\approx 0.09 M_Hc^2 which can be extracted by the Blandford-Znajek mechanism.Comment: 8 pages, 2 figure

    Phenomenology of Goldstino Couplings

    Full text link
    A general coupling of the Goldstino to the matter field and the weak gravitational field is constructed based on the standard and the nonlinear Volkov-Akulov realization of SUSY. The resulting Lagrangian, which is invariant under SUSY transformations, can give rise to explicit interactions which couple the helicity +-1/2 states of the gravitino with the gravitational field as well as the matter field.Comment: 7 pages; final version to appear in Modern Physics Letters

    Long-Range Coulomb Effect on the Antiferromagnetism in Electron-doped Cuprates

    Full text link
    Using mean-field theory, we illustrate the long-range Coulomb effect on the antiferromagnetism in the electron-doped cuprates. Because of the Coulomb exchange effect, the magnitude of the effective next nearest neighbor hopping parameter increases appreciably with increasing the electron doping concentration, raising the frustration to the antiferromagnetic ordering. The Fermi surface evolution in the electron-doped cuprate Nd2x_{2-x}Cex_xCuO4_4 and the doping dependence of the onset temperature of the antiferromagnetic pseudogap can be reasonably explained by the present consideration.Comment: 4 pages, 4 figure
    corecore