247 research outputs found
Detection of Deception with fMRI: Are we there yet?
A decade of spectacular progress in functional magnetic resonance imaging (fMRI) technology and systems neuroscience research has so far yielded few changes in our daily lives. The dearth of clinical applications of this prolific and academically promising research tool began raising the eyebrows of the public and the research funding agencies. This may be one of the reasons for the enthusiasm and interest paid to the growing body of literature suggesting that blood oxygenation level-dependent (BOLD) fMRI of the brain could be sensitive to the differences between lie and truth. The word \u27differences\u27 is critical here since it refers to the often-ignored core concept of BOLD fMRI: it is only sensitive to differences between two brain states. Thus, available studies report using fMRI to discriminate between lie and truth or some other comparative state rather than to positively identify deception. This nuance is an example of the extent to which applied neuroscience research does not lend itself to the type of over-simplification that has plagued the interpretation of fMRI-based lie detection by the popular press and the increasingly vocal academic critics. As an early contributor to the modest stream of data on fMRI-based lie detection, I was asked by Dr Aldert Vrij to write a piece in favour of fMRI-based lie detection, to be contrasted with a piece by Dr Sean Spence presenting an opposite point of view (Spence, 2008). This seemingly straightforward task presented two hurdles: having to respond to the popular as well as scientific view of what lie detection with fMRI is and present a wholly positive view of evolving experimental data
Relative Function: Nuclear Brain Imaging in United States Courts
Neuropsychological testing--medical imaging of the brain structure and function--allows the expert to inform the court on the brain structure and function of the forensic examinee. Supported by extensive clinical use, neuropsychological testing and structural imaging in the form of computerized tomography and structural magnetic resonance imaging have achieved general acceptance in court. However, functional imaging such as functional MRI and nuclear medicine techniques, such as positron emission tomography (PET), have faced more admissibility challenges. While functional imaging is becoming an increasingly important tool in assessing neuropsychiatric illness, we surmise that evidentiary challenges are largely related to the phase of trial in which the nuclear study is offered as evidence. This article will review the basic science of functional nuclear imaging including PET and single photon emission computed tomography. We will then review cases where admissibility of these techniques has been challenged and consider whether and how nuclear brain imaging can influence the outcome of the trial
Using Brain Imaging for Lie Detection: Where Science, Law, and Policy Collide
Progress in the use of functional magnetic resonance imaging (fMRI) of the brain to evaluate deception and differentiate lying from truth-telling has created anticipation of a breakthrough in the search for technology-based methods of lie detection. In the last few years, litigants have attempted to introduce fMRI lie detection evidence in courts. This article weighs in on the interdisciplinary debate about the admissibility of such evidence, identifying the missing pieces of the scientific puzzle that need to be completed if fMRI-based lie detection is to meet the standards of either legal reliability or general acceptance. We believe that the Daubert’s “known error rate” is the key concept linking the legal and scientific standards. We posit that properly-controlled clinical trials are the most convincing means to determine the error rates of fMRI-based lie detection and confirm or disprove the relevance of the promising laboratory research on this topic. This article explains the current state of the science and provides an analysis of the case law in which litigants have sought to introduce fMRI lie detection. Analyzing the myriad issues related to fMRI lie detection, the article identifies the key limitations of the current neuroimaging of deception science as expert evidence and explores the problems that arise from using scientific evidence before it is proven scientifically valid and reliable. We suggest that courts continue excluding fMRI lie detection evidence until this potentially useful form of forensic science meets the scientific standards currently required for adoption of a medical test or device. Given a multitude of stakeholders and, the charged and controversial nature and the potential societal impact of this technology, goodwill and collaboration of several government agencies may be required to sponsor impartial and comprehensive clinical trials that will guide the development of forensic fMRI technology
Emerging neurotechnologies for lie-detection: promises and perils
Detection of deception and confirmation of truth telling with conventional polygraphy raised a host of technical and ethical issues. Recently, newer methods of recording electromagnetic signals from the brain show promise in permitting the detection of deception or truth telling. Some are even being promoted as more accurate than conventional polygraphy. While the new technologies raise issues of personal privacy, acceptable forensic application, and other social issues, the focus of this paper is the technical limitations of the developing technology. Those limitations include the measurement validity of the new technologies, which remains largely unknown. Another set of questions pertains to the psychological paradigms used to model or constrain the target behavior. Finally, there is little standardization in the field, and the vulnerability of the techniques to countermeasures is unknown. Premature application of these technologies outside of research settings should be resisted, and the social conversation about the appropriate parameters of its civil, forensic, and security use should begin
Pulmonary Capillary Recruitment and Distention in Mammalian Lungs: Species Similarities
Pulmonary arterial pressure rises minimally during exercise. The pulmonary microcirculation accommodates increasing blood flow via recruitment of pulmonary capillaries and, at higher flows, by distention of already perfused capillaries. The flow transition range between recruitment and distention has not been studied or compared across mammalian species, including humans. We hypothesised that the range would be similar. Functional pulmonary capillary surface area (FCSA) can be estimated using validated metabolic techniques. We reviewed data from previous studies in three mammalian species (perfused rabbit lungs and dog lung lobes, and exercising humans) and generated blood flow-FCSA curves over a range of flows. We noted where the curves diverged from the theoretical line of pure recruitment (Recruitment) and determined the flow where the curve slope equalled 50% that of Recruitment, or equalled that of a theoretical curve representing full capillary distention (Distention). The three mammalian species have similar flow ranges for the transition from predominantly recruitment to predominantly distention, with dogs having the highest transition point. Within the physiological range of most daily activity, the species are similar and accommodate increasing blood flow mainly via recruitment, with progressive distention at higher flows. This is highly relevant to pulmonary physiology during exercise
Desire Versus Efficacy in Smokers’ Paradoxical Reactions to Pictorial Health Warnings for Cigarettes
Pictorial health warnings on cigarette packs create aversive emotional reactions to smoking and induce thoughts about quitting; however, contrary to models of health behavior change, they do not appear to alter intentions to quit smoking. We propose and test a novel model of intention to quit an addictive habit such as smoking (the efficacy-desire model) that can explain this paradoxical effect. At the core of the model is the prediction that self-efficacy and desire to quit an addictive habit are inversely related. We tested the model in an online experiment that randomly exposed smokers (N = 3297) to a cigarette pack with one of three increasing levels of warning intensity. The results supported the model’s prediction that despite the effects of warnings on aversion to smoking, intention to quit smoking is an inverted U-shape function of the smoker’s self-efficacy for quitting. In addition, smokers with greater (lesser) quit efficacy relative to smoking efficacy increase (decrease) intentions to quit. The findings show that previous failures to observe effects of pictorial warning labels on quit intentions can be explained by the contradictory individual differences that warnings produce. Thus, the model explains the paradoxical finding that quit intentions do not change at the population level, even though smokers recognize the implications of warnings. The model suggests that pictorial warnings are effective for smokers with stronger quit-efficacy beliefs and provides guidance for how cigarette warnings and tobacco control strategies can be designed to help smokers quit
Recommended from our members
Gender Differences in the Motivational Processing of Babies Are Determined by Their Facial Attractiveness
Background: This study sought to determine how esthetic appearance of babies may affect their motivational processing by the adults. Methodology and Principal Findings: Healthy men and women were administered two laboratory-based tasks: a) key pressing to change the viewing time of normal-looking babies and of those with abnormal facial features (e.g., cleft palate, strabismus, skin disorders, Down's syndrome and fetal alcohol syndrome) and b) attractiveness ratings of these images. Exposure to the babies' images produced two different response patterns: for normal babies, there was a similar effort by the two groups to extend the visual processing with lower attractiveness ratings by men; for abnormal babies, women exerted greater effort to shorten the viewing time despite attractiveness ratings comparable to the men. Conclusions: These results indicate that gender differences in the motivational processing of babies include excessive (relative to the esthetic valuation) motivation to extend the viewing time of normal babies by men vs. shortening the exposure to the abnormal babies by women. Such gender-specific incentive sensitization phenomenon may reflect an evolutionary-derived need for diversion of limited resources to the nurturance of healthy offspring
The Paradox of Pulmonary Vascular Resistance: Restoration of Pulmonary Capillary Recruitment as a \u3ci\u3eSine Qua Non\u3c/i\u3e for True Therapeutic Success in Pulmonary Arterial Hypertension
Exercise-induced increases in pulmonary blood flow normally increase pulmonary arterial pressure only minimally, largely due to a reserve of pulmonary capillaries that are available for recruitment to carry the flow. In pulmonary arterial hypertension, due to precapillary arteriolar obstruction, such recruitment is greatly reduced. In exercising pulmonary arterial hypertension patients, pulmonary arterial pressure remains high and may even increase further. Current pulmonary arterial hypertension therapies, acting principally as vasodilators, decrease calculated pulmonary vascular resistance by increasing pulmonary blood flow but have a minimal effect in lowering pulmonary arterial pressure and do not restore significant capillary recruitment. Novel pulmonary arterial hypertension therapies that have mainly antiproliferative properties are being developed to try and diminish proliferative cellular obstruction in precapillary arterioles. If effective, those agents should restore capillary recruitment and, during exercise testing, pulmonary arterial pressure should remain low despite increasing pulmonary blood flow. The effectiveness of every novel therapy for pulmonary arterial hypertension should be evaluated not only at rest, but with measurement of exercise pulmonary hemodynamics during clinical trials
Emotional Reaction Facilitates the Brain and Behavioral Impact of Graphic Cigarette Warning Labels in Smokers
Background—Warning labels on cigarette packages are an important venue for information about the hazards of smoking. The 2009 US Family Smoking Prevention and Tobacco Control Act mandated replacing the current text-only labels with graphic warning labels. However, labels proposed by the Food and Drug Administration (FDA) were challenged in court by the tobacco companies, who argued successfully that the proposed labels needlessly encroached on their right to free speech, in part because they included images of high emotional salience that indiscriminately frightened rather than informed consumers.
Methods—We used functional MRI to examine the effects of graphic warning labels\u27 emotional salience on smokers\u27 brain activity and cognition. Twenty-four smokers viewed a random sequence of blocks of graphic warning labels that have been rated high or low on an ‘emotional reaction’ scale in previous research.
Results—We found that labels rated high on emotional reaction were better remembered, associated with reduction in the urge to smoke, and produced greater brain response in the amygdala, hippocampi, inferior frontal gyri and the insulae.
Conclusions—Recognition memory and craving are, respectively, correlates of effectiveness of addiction related public health communications and interventions, and amygdala activation facilitates the encoding of emotional memories. Thus, our results suggest that emotional reaction to graphic warning labels contributes to their public health impact and may be an integral part of the neural mechanisms underlying their effectiveness. Given the urgency of the debate about the constitutional risks and public health benefits of graphic warning labels, these preliminary findings warrant consideration while longitudinal clinical studies are underwa
- …